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Abstract

Quantum switching networks are derived from conventional switching networks by replacing the classical

switches by quantum switches. We give the quantum circuit design and routing of an n×m network, called

a quantum concentrator that can direct quantum bit packets in arbitrary quantum states from any of its

k inputs to some of its k outputs where 1 ≤ k ≤ m ≤ n. Our designs are based on sparse crossbars

which are rectangular grids of 2 × 2 crosspoints. Sparse crossbar concentrator structures with theoretically

minimum crosspoint complexities for any values of n and m are well-known. We transform two such families

of optimal concentrators, called fat-slim and banded sparse crossbars into quantum networks and provide

self-routing algorithms for these families of concentrators. In this process we extend the notion of packet

concentration to a quantum network and design self-routing quantum crosspoints from quantum gates. We

address issues critical to quantum operation like reversibility and localized self-routing and give a rigorous

proof that quantum fat-slim and banded sparse crossbar concentrators are self-routable. The self-routing

algorithms described in the paper can be used for both quantum and classical sparse crossbar concentrators

by the linearity property of all quantum systems.

1 INTRODUCTION

Quantum computation and quantum information science are areas of research which have

rapidly gained in prominence from their origins around three decades ago. The unique proper-

ties of quantum systems as manifested in the form of quantum parallelism and entanglement

have been used in finding efficient solutions for classically intractable problems. The interest

in this area received a major boost with the discovery of some seminal algorithms which have

demonstrated that quantum systems can be used to solve interesting exponential complexity

problems with speedups that are impossible in classical computing. Two well-known examples

are Shor’s polynomial time algorithm for finding prime factors of a composite number [1] and
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Grover’s search algorithm that can search an unstructured database with n elements in O(
√

n)

time steps [2].

Any realistic scenario for the future scaling up of quantum computing involves spatially dis-

tributed quantum devices which interact with each other. Several recent schemes for large scale

quantum computer architectures based on solid-state silicon have been proposed [3, 4] which

are projected to provide the scalability required to achieve a useful computational substrate. The

issue of quantum data transport has been recognized as a particularly critical requirement in up-

coming silicon-based quantum computing technologies [5, 6]. Spatially distributed components

introduce the need for quantum wires over which quantum data can be transmitted but building

quantum wires and transferring quantum bits (qubits) is a non-trivial operation as, in general,

quantum bits cannot be copied, which is a consequence of the no-cloning theorem [7]. Proposals

for building quantum wires in solid state technologies include the quantum swapping and

teleportation based architectures in [5, 6, 8]. The high cost of such wires implies that the O(n2)

wires needed to interconnect n quantum devices can be a major bottleneck in implementing

quantum systems.

This cost can be greatly reduced by using efficient switching network designs. The basic

premise behind this idea is to use arrangements of reconfigurable switches with input quantum

bits on their own quantum wires and then route them to the required destination. These switches

are represented using quantum circuits composed of quantum gates. In addition to reducing

wire count, reconfigurable quantum switches can form integral parts of the quantum data

distribution system in envisioned architectures for scalable quantum computing. For example,

in the Quantum Logic Array (QLA) microarchitecture proposed in [9], the high-level quantum

computer structure consists of logical quantum bits connected with a programmable commu-

nication network in which integrated switch islands are used to redirect quantum data from

nearby logical quantum bits.

The first design of a network for permuting individual quantum bits was given by Tsai and

Kuo [10]. They gave a method to map a decomposition of any given permutation in terms of

disjoint cycles and transpositions onto a quantum switch circuit which realizes that particular

permutation. Since the circuit realizes only one permutation, it needs to be made anew for each

new permutation to be realized. The first quantum switch network using reconfigurable switches

to route groups of quantum bits was given by Shukla et. al. in [11, 12]. This quantum network

can permute quantum information packets between its n inputs and n outputs. It was shown that
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this network realizes nn/2 permutations and can be used to resolve blocking when transmitting

classical packets by creating a superposition of packets whenever they contend for the same

wire in the network. Recently, Cheng and Wang [13] have proposed a quantum merge sorting-

based network that can route all n! permutations using O(n log3 n) gates. Switching network

configurations suitable for quantum networks have also been identified [14]. All these networks

realize ordered connection maps, i.e., the particular output to which an input is connected is

specified beforehand. In this paper we focus on the quantum circuit design and routing of

concentrator switches that realize unordered connections between a set of inputs and a set of

outputs. It is well-known that concentrators and other similar switches like extensive graphs and

expanders are building blocks of more powerful interconnection networks such as nonblocking

networks [15, 16].

Formally, an (n, m)-concentrator is a switching network with n inputs and m outputs, 1 ≤

m ≤ n in which any set of k inputs can be routed over nonintersecting paths to some k outputs,

1 ≤ k ≤ m, but without the order specified. This is unlike other switches such as permutation

networks which provide ordered connections between their inputs and outputs.

A family of concentrators, called sparse crossbar concentrators, can be designed using a grid or

matrix of crosspoints with m rows and n columns where a crosspoint is placed between column

i and row j if there exists an edge between input i and output j. Explicit sparse crossbar

concentrator structures with theoretically minimum crosspoint complexities for any arbitrary

values of n and m are well-known [17, 18]. Our main contribution in this paper is to transform

two such families of optimal concentrators, called fat-slim and banded sparse crossbars into

quantum networks and provide self-routing algorithms for these families of concentrators.

We first give an interpretation of concentration in a quantum network. In a classical concentra-

tor network, packets for concentration are assigned at inputs and these input packet assignments

can be issued only one assignment at a time. In a quantum concentrator, packets consist of

quantum bits and thus represent a superposition of assignment patterns of packets which can

be concentrated all at once by such a network due to the principle of quantum parallelism.

This aspect is what distinguishes quantum concentrators from their classical counterparts. For

example, consider a concentrator in which three inputs, say X, Y and Z, have packets which

have to be concentrated. Suppose input X has two packets represented as x1 and x2, input Y

has one packet y1 and input Z has two packets z1 and z2. Y generates a “pure” packet while X

and Z generate quantum packets by creating a superposition of both their respective packets,
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and all three input sources then push their packets into a quantum concentrator. The outcome

is that all the four possible input packet patterns: (x1, y1, z1), (x1, y1, z2), (x2, y1, z1), (x2, y1, z2)

are routed in parallel and the output is a superposition of these four packet patterns each of

which corresponds to the output obtained by concentrating one of the input packet patterns.

In the process of designing a quantum concentrator, we address some issues particular to

quantum systems. One such issue is the reversibility constraint of quantum information pro-

cessing. All quantum operations are inherently reversible in nature. This notion of reversibility

is exactly the same as that commonly understood for any input-output mapping, i.e., given the

output state of a quantum system, the corresponding input state can be uniquely determined. A

“rectangular” structure like an (n, m)-sparse crossbar concentrator where the number of inputs,

n, is not equal to the number of outputs, m, is inherently non-reversible. We devise a way to

make (n, m)-crossbar concentrators “square” by using additional lines on the input and output

sides of such concentrators and ensuring that valid packets for concentration are routed only

among the original n inputs and m outputs.

Additionally, in a concentrator, a subset of inputs, say Is can, in general, be matched to

multiple subsets of outputs and a subset of outputs, say Os can be the matching for multiple

input subsets. Even when Os is the only matching for Is, there may be multiple settings for

the internal crosspoints which realize this matching. As a simple example, consider an (n, m)-

concentrator in which a k-input subset and a k output subset are interconnected by a k× k full

crossbar, k ≤ m. Also assume that the k inputs in the k-input subset are not connected to any

other outputs. Then obviously this k-input subset can be matched to only one output set of size

k but all possible k! one-to-one maps are possible.

Thus, to ensure reversibility a routing algorithm is needed to determine the crosspoint settings

and fix the output matching subset for a given input subset. Even though efficient centralized

routing algorithms for optimal crossbar concentrators with O(log n) delay for n tree-connected

processors and O(n log n) delay for a single processor are known [18], [19], they cannot be

adopted for quantum concentrators. It is critical to have a self-routing algorithm for quantum

concentration in which the state of a crosspoint is determined by using only the local information

from the incoming packet headers. An important property of self-routing packets is that the

control quantum bits used to configure the crosspoint settings can be restored back to their

original states easily thus preventing loss of information due to decoherence.

The rest of this paper is organized as follows. In Section 2, we introduce the basic quantum
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circuit concepts that will be used in the design and routing of quantum concentrators. We also

present a quantum packet concentrator model that will be used to describe our self-routing

algorithms. In Section 3, we give a brief overview of classical sparse-crossbar concentrators.

In Section 4, we define the functionality of quantum sparse-crossbar concentrators, present the

design of quantum sparse crossbar concentrators and describe a self-routing algorithm for such

concentrators. In Section 5, we prove the correctness of this algorithm for the optimal banded

and fat-slim quantum crossbar concentrators. In Section 6, we give an example to describe

the concentration process on a quantum sparse crossbar concentrator and address the issue

of routing more than m packets on an (n, m)-quantum crossbar concentrator. In Section 7, we

describe how to restore the state of auxiliary qubits to prevent decoherence and conclude the

paper with the analysis of the gate count and routing delay, and remarks on remaining questions

and future work in Section 8.

2 QUANTUM CIRCUITS AND PACKETS

In this section we give a brief description of basic concepts related to quantum information,

quantum circuits, quantum gates, and quantum packets.

2.1 Qubits

The indivisible unit of classical information is the bit: an object that can take either one of

two values: 0 or 1. The corresponding unit of quantum information is the quantum bit or

qubit. Unlike a classical bit, a qubit can take values which are, in some sense, a combination of

the values 0 and 1, i.e., it can be simultaneously be both 0 and 1. Formally, a qubit’s state is

represented as a unit vector in a two-dimensional complex Hilbert space and is expressed as:

|ψ〉 = α |0〉+ β |1〉 , |α|2 + |β|2 = 1; α,β ∈ C (1)

The vectors |0〉 and |1〉 constitute an orthonormal basis for this space. These two vectors are

referred to as the computational basis vectors. We can perform a measurement that projects

the state of this qubit onto the computational basis, i.e., the measurement projects |ψ〉 onto the

basis {|0〉 , |1〉}. The outcome of the measurement is not deterministic— the probability that we

observe the result to be |0〉 is |α|2 and the probability that we observe the result to be |1〉 is |β|2.

α and β are referred to as the probability amplitudes of the states |0〉 and |1〉 respectively.

The state of an n-qubit system can be expressed as vector in a complex Hilbert space of

dimension 2n. This 2n dimensional space is a tensor product of the n two-dimensional spaces
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|x〉

|0〉 → 1√
2
(|0〉+ |1〉)

|1〉 → 1√
2
(|0〉 − |1〉)

H
H |x〉

(a)

Target |x〉

|c0〉

|c1〉

|c0〉

|c1〉

|(c0c̄1)⊕ x〉

Control

(b)

Source |s〉

|s⊕ t〉

|s〉

|t〉Target

(c)

c

|y〉

|x〉

(d)

|y〉

c

|x〉

(e)

Fig. 1: Quantum gates: (a) Hadamard gate (b) Controlled-controlled not gate (c) Controlled-not

(CNOT) gate (d) Controlled swap or switch gate (e) Switch gate made using CNOT gates.

representing individual qubits. The orthonormal basis for this space can be chosen as the

states in which each qubit has a definite value, either |0〉 or |1〉. A general normalized vector

representing an n-qubit state can be expanded in this basis as

|ψ〉 = α0 |00 · · · 00〉+ α1 |00 · · · 01〉+ · · ·+ α2n−2 |11 · · · 10〉+ α2n−1 |11 · · · 11〉

=
2n−1∑

i=0

αi |i〉 (2)

where we have associated with each string the number that it represents in binary notation,

ranging in value from 0 to 2n− 1. Here the αi’s are complex numbers satisfying
∑

i|αi|2 = 1. A

measurement of all n qubits by projection of each onto the {|0〉 , |1〉} basis, yields the outcome

|i〉 with probability |αi|2 [20].

2.2 Quantum Gates

The state of qubits is transformed using quantum gates and circuits composed of such gates. The

quantum gate formalism was first proposed by Deutsch [21]. A quantum gate is a linear, unitary

transformation on the space of qubit state vectors. The unitary nature of these transformations

implies that quantum gates are reversible, i.e., given the state of qubits at the output of a gate,

the input state can be uniquely determined. The unitarity also implies that the gates preserve

the norm of the input state which amounts to preserving probability. These requirements of

reversibility and norm preservation are basic axioms of quantum theory.

An example of a single qubit gate is the Hadamard gate, H , (Figure 1(a)) which transforms

the basis vectors |0〉 and |1〉 as

|0〉 H−→ 1√
2
(|0〉+ |1〉), |1〉 H−→ 1√

2
(|0〉 − |1〉) (3)

In the above mapping we say that the basis vectors |0〉 and |1〉 are put in an equal superposition

by the Hadamard gate, as after the transformation, the probability of observing either of the
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basis vectors at the output is equal to 1/2. Thus, the Hadamard gate can be considered a

quantum randomizer which takes a 0 or 1 bit and transforms it so that the output is either 0

or 1 with probability 1/2 [22].

A gate is completely specified by the mapping it performs on the basis vectors as all the rest

of the input states can be represented as vectors which are a linear combination of these basis

vectors. In the case of the Hadamard gate this means that an input qubit in the general state

α |0〉+ β |1〉 would be transformed to α√
2
(|0〉+ |1〉) + β√

2
(|0〉 − |1〉) = α+β√

2
|0〉+ α−β√

2
|1〉.

An n-bit quantum circuit can simultaneously act on all the 2n components of the input state

and transform them according to some specified mapping at once. This is the source of massive

quantum parallelism. To make this more clear, suppose we are interested in finding the properties

of a function f(i) which takes the n-bit binary string i as input. The table of values for f(i) is

of size 2n and is clearly infeasible to calculate for large n. But, with a quantum computer, Uf

that acts according to

|i〉 |0〉 Uf−→ |i〉 |f(i)〉 (4)

When we write any two qubit states side-by-side, it means we are taking a tensor product, thus

|i〉 |0〉 = |i〉 ⊗ |0〉. We can put the input register consisting of the qubits corresponding to i in a

superposed state similar to the one in Eqn. (2):
( 1√

2
(|0〉+ |1〉)

)
⊗ · · ·⊗

( 1√
2
(|0〉+ |1〉)

)

︸ ︷︷ ︸
nqubits

=
1

2n/2

2n−1∑

i=0

|i〉 (5)

where we have taken the tensor product of the n qubits to get the complete state. By computing

f(i) only once, we can generate a state

1
2n/2

2n−1∑

i=0

|i〉 |0〉 Uf−→ 1
2n/2

2n−1∑

i=0

|i〉 |f(i)〉 (6)

All the global properties of f are encoded in this state and can be extracted if an efficient

method is devised. This is the kind of massive parallelism Shor uses in his famous factorization

algorithm [1]. This same parallelism enables us to probabilistically combine packets in quantum

switching networks. The input to the quantum switching network can be a superposition of

multiple packet assignments, all of which are routed in parallel to the outputs. The switching

network operates in different switch configurations for different packet assignments. We give a

more detailed explanation of this concept later in the paper for quantum concentrators.

Among gates which operate on multiple qubit inputs, the most common type of gates used in

quantum circuits are the controlled quantum gates. A controlled gate’s function is determined
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by the state of some control qubits. For example, the controlled-controlled-not (CC-NOT) gate

shown in Figure 1(b), with two control qubits c0 and c1 performs the following transformation

|c0, c1, x〉
CC−NOT−−−−−−−→ |c0, c1, (c0.c̄1 ⊕ x)〉 (7)

thus, it inverts x when c0 = 1 and c1 = 0. We use the notational convention |c0, c1, x〉 =

|c0〉 |c1〉 |x〉. If a gate becomes active when a control qubit is 1, then that is indicated by a solid

circle, (for c0) and if a gate becomes active when a control qubit is 0 then that is indicated by

an open circle, (for c1). The CC-NOT gate transforms the basis vectors |100〉 and 101 to 101 and

100 respectively and leaves all the remaining six basis vectors unchanged. The qubit affected

by the operation of a controlled gate is called the target qubit. If we initialize x to 0, then this

gate can be viewed as a quantum comparator which sets the target qubit to |1〉 when c0 < c1 and

leaves it unchanged otherwise.

2.3 Quantum Copy and Switch Gates

The simplest controlled gate is the controlled-not (CNOT) gate shown in Figure 1(c). The

function of this gate is given by the mapping:

|s〉 |t〉 CNOT−−−−→ |s〉 |s⊕ t〉 (8)

Hence bit t is inverted when s = 1 and remains unchanged when s = 0. This gate functions as

a NOT gate for the lower or target qubit when the control qubit is in state |1〉. When t = 0 we

see that the mapping is of the form |s〉 |0〉 CNOT−−−−→ |s〉 |s〉, thus a CNOT gate can also be viewed

as a copier which copies the upper or source qubit on to the lower or target qubit when the

target qubit is initialized to state |0〉. Note that this copy operation can only be done when the

upper qubit is in one of the two basis states: |0〉 or |1〉. For a source qubit in the general state

|ψ〉 = α |0〉+ β |1〉, the mapping is given by:

(α |0〉+ β |1〉)s |0〉t
CNOT−−−−→ α |00〉st + β |11〉st (9)

The output state is either 00 with probability |α|2 or 11 with probability |β|2 and we have copied

0 and 1 bits to the target. We shall use such gates in our concentrator design.

The basic gate used to build quantum switching networks is the controlled swap gate or

switch gate, which is shown in Figure 1(d). A switch gate is a multi-qubit gate which swaps

two sets of qubits or quantum packets when a control qubit c is |1〉 and passes them through

unchanged, otherwise [11, 12]. These two states of the switch gate are referred to as the cross
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and through states respectively. Thus, this gate can be used as a reconfigurable 2× 2 switch to

route quantum bit packets. The function of this gate can be represented as

|x〉 |y〉 |0〉c
Switch−−−−−→

Through
|x〉 |y〉 |0〉c (10)

|x〉 |y〉 |1〉c
Switch−−−−→
Cross

|y〉 |x〉 |1〉c (11)

where x and y are equal length binary strings. The thick lines in Figure 1(d) for x and y indicate

that there are multiple qubits on them. An implementation of the switch gate with strings x and

y of length 1, using two controlled-not (CNOT) and one CC-NOT gate is shown in Figure 1(e).

If x = x1x0 and y = y1y0 are strings of length two, then the transformation done by the switch

gate is given by:

|x1, x0〉 |y1, y0〉 |0〉c
Switch−−−−−→

Through
|x1, x0〉 |y1, y0〉 |0〉c (12)

|x1, x0〉 |y1, y0〉 |1〉c
Switch−−−−→
Cross

|y1y0〉 |x1, x0〉 |1〉c (13)

2.4 Quantum Packets and Concentration Assignments

A quantum packet consists of a set of data qubits and one additional qubit which we refer

to as the routing qubit. We assume that quantum packets composed of qubits are routed over

a quantum concentrator. Reversibility considerations in quantum systems mean that unlike

classical systems no connecting wire or input/output line can remain empty. We use the routing

qubit to overcome this constraint, the routing qubit is set to |1〉 to indicate the presence of a

quantum packet and to |0〉 to indicate an empty wire or absence of a packet. Note that in the

rest of this chapter whenever we write |a〉, where a is a binary variable, then this represents the

state of a quantum bit. The binary variable itself is indicated as a. A quantum packet is defined

as [23]:

Definition 1 (Quantum packet). Let an input have m nd-bit packets, d1, . . . , dm. If packet di is

to be concentrated with probability pi, then the source at this input feeds into the concentrator

a quantum packet of the following form:
m∑

i=1

αi |ri, di〉 (14)

where |αi|2 = pi and ri = 1. We refer to the individual components of the quantum packet,

the bit strings (ri, di) as classical packets. The routing bits in the classical packets are ri. The

length of the quantum packet is nd + 1 qubits. We refer to these strings as classical packets as
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they represent a basis state (with no superposition) of the constituent qubits and any group of

quantum bits in a basis state are conceptually equivalent to a group of classical bits having the

same value.

If the input source has no packets to concentrate then the empty line is indicated by a single

nd +1-bit string in which the routing bit is set to 0, and the data bits can be set to any arbitrary

value.

An input concentration pattern for an n-input concentrator is a sequence of classical packets,

each of which belongs to a quantum packet on the n inputs from top to bottom. A quantum

concentration assignment is a superposition of a set of concentration patterns. We define these

terms formally as follows:

Definition 2 (Quantum concentration assignment). A quantum concentration assignment for an

n-input concentrator is a superposition of a set of t concentration patterns of the form:
t∑

j=1

γj |(rj,1, dj,1), · · · , (rj,n, dj,n)〉 (15)

where the concentration pattern |(rj,1, dj,1), · · · , (rj,n, dj,n)〉 consists of n classical packets in which

(rj,i, dj,i) is the jth classical packet at input i. |γj |2 is the probability of the jth concentration

pattern being realized with
∑t

j=1|γj |2 = 1.

If the quantum packets at all the inputs are independent and of the kind given in Eqn. (14)

then the quantum assignment can be expressed as a tensor product of the quantum packets as

follows:
n⊗

i=1

|Qi〉 =
n⊗

i=1

( ti∑

j=1

αij |rij , dij〉
)

(16)

where |Qi〉 =
∑ti

j=1 αij |rij , dij〉 is the quantum packet on input i. The tensor product in Eqn. (16)

expanded to a quantum concentration assignment of the form in Eqn. (15) contains
∏n

i=1 ti

concentration patterns.

As an example, consider three inputs indexed by 1, 2 and 3 having the quantum packets:
1√
2
(|1, d11〉+ |1, d12〉), |1, d21〉 and 1√

3
|1, d31〉+

√
2√
3
|1, d32〉 respectively. Then the quantum concen-

tration assignment is given by:

1√
2

(|1, d11〉+ |1, d12〉)⊗ |1, d21〉 ⊗
( 1√

3
|1, d31〉+

√
2√
3
|1, d32〉

)

=
1√
6
|(1, d11), (1, d21), (1, d31)〉+

1√
3
|(1, d11), (1, d21), (1, d32)〉
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+
1√
6
|(1, d12), (1, d21), (1, d31)〉+

1√
3
|(1, d12), (1, d21), (1, d32)〉 (17)

Thus the quantum concentration assignment consists of a superposition of four concentration

patterns, two of which have a probability 1/3 and the other two a probability 1/6 of being

observed on measurement. A quantum concentrator can route such patterns contained in the

input quantum concentration assignment in parallel.

3 CLASSICAL SPARSE CROSSBAR CONCENTRATORS

An (n, m)-sparse crossbar network is a matrix of crosspoints or switches with m rows and n

columns. Each crosspoint acts as a simple 2 × 2 switch which can either swap the data on its

two inputs onto its outputs or pass them through unchanged. We refer to these two states of

the crosspoint as the “cross” state and the “through” state respectively.

An (n, m)-sparse crossbar concentrator is a (n, m)-sparse crossbar in which any k inputs,

k ≤ m, can be routed over nonintersecting paths to some k outputs. Any sparse crossbar is

a concentrator if its crosspoint distribution is such that the constraints of Hall’s theorem are

satisfied. This theorem is stated below:

Theorem 1 (Hall’s Theorem). Let O be a finite set and let Y1, Y2, . . . , Yr be arbitrary subsets of O.

There exist distinct elements yi ∈ Yi, 1 ≤ i ≤ n if and only if the union of any k of Y1, Y2, . . . , Yr

contains at least k elements.

Let the set O in the theorem denote the set of outputs of a sparse crossbar and Y1, Y2, . . . , Yr

represent the neighbor sets of some r inputs s1, s2, . . . , sr respectively, i.e., Yi is the subset of

outputs in O to which input si can be connected, 1 ≤ i ≤ r. Then if the union of Y1, Y2, . . . , Yr

contains at least r outputs for any choices of s1, s2, . . . , sr in the input set, and any r, 1 ≤ r ≤ m,

then Hall’s theorem implies that the sparse crossbar is a concentrator.

Nakamura and Masson in [24] gave a lower bound of m(n − m + 1) on the crosspoint

complexity, i.e., number of crosspoints, for (n, m)-sparse crossbar concentrators by showing

that each output needs to share crosspoints with at least n −m + 1 inputs. Oruç et al in [17]

and [18] gave explicit crossbar structures of optimal concentrators which achieved this bound

for any n and m. They used Hall’s theorem to show that certain n×m sparse crossbar structures

with exactly m(n−m + 1) crosspoints can act as concentrators.

Two such optimal concentrators, the fat-slim and banded sparse crossbar concentrators, which

we shall be using extensively, are shown in Figure 2. As seen in Figure 2(a), in a fat-slim crossbar
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m outputs

n inputs

(a) Fat-slim crossbar concentrator.

m outputs

n inputs

(b) Banded crossbar concentrator.

Fig. 2: Classical sparse crossbar concentrators, n=9, m=5.

concentrator, the input columns can be divided into a fat portion in which an input is connected

to all outputs and a slim portion in which an input is connected to only one output with all slim

inputs being connected to different outputs. In a banded crossbar concentrator (Figure 2(b)) all

the crosspoints form a transverse band in the middle. Note that in these sparse crossbars each

of the m outputs is connected to n−m + 1 inputs.

4 QUANTUM SPARSE CROSSBAR CONCENTRATORS

An input concentration pattern for a concentrator is said to be capacity achieving if no greater

than m packets in the pattern have their routing bits equal to 1, where m is the number of

outputs of the concentrator. We call a quantum concentration assignment capacity achieving if

all of its concentration patterns are capacity achieving. Also, we refer to packets with routing

bit set to 1 as valid packets.

A quantum sparse crossbar network is obtained from a classical crossbar network by replacing

the classical crosspoints by quantum crosspoints which can switch quantum packets. A quantum

crosspoint can be viewed as a configurable 2× 2 switch which either swaps or passes through

unchanged to its outputs the two quantum packets incident at its inputs. Reversibility in

quantum systems implies, that for a quantum sparse crossbar, unlike a classical sparse crossbar,

each crosspoint needs to have qubits coming in on each of its two inputs and qubits leaving

on each of its outputs. As mentioned earlier in Section 2.4 an absence of a packet or an empty

wire is indicated by a quantum bit string with the routing bit set to 0. Thus, in the quantum

domain, for an n×m sparse crossbar network, the m empty wires coming in from the left can

be represented by blocks of quantum bits in which the routing bit is set to 0. We can imagine

m additional packet sources at these wires which generate quantum bit blocks in which the

routing bit is always set to 0. The same reasoning can be applied to the n empty wires leaving

the sparse crossbar at the bottom. This means that they can be viewed as n additional outputs
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n

n + 1

n + m

1

2

m

m + 2 m + nm + 1

INPUTS

OUTPUTS

1 2

Fig. 3: Numbering of inputs and outputs in an n×m quantum sparse crossbar network.

and if the sparse crossbar is a concentrator then the exiting quantum bit strings on these outputs

have their routing bits equal to 0 as long as the input pattern is capacity achieving. This in effect

creates a “square” (n + m)× (n + m) crossbar network from a “rectangular” n×m network in

which only the n inputs (on the top) can get valid packets. If the sparse crossbar is a concentrator

and the input pattern is capacity achieving then all the valid packets are concentrated to the m

outputs on the right hand side. If we number the inputs on the top 1, . . . , n from left to right,

the inputs on the left n+1, . . . , n+m from top to bottom, the outputs on the right 1, . . . ,m and

outputs on the bottom m + 1, . . . ,m + n as shown in Figure 3 then:

Definition 3 (QSC(n, m)). An n×m quantum sparse crossbar network (n ≥ m) is called an (n, m)-

quantum sparse crossbar concentrator or QSC(n, m) if, any capacity achieving input pattern with

k valid packets, where k ≤ m, is routed such that these packets appear on some k of the first m

outputs. That is, for a capacity achieving input concentration pattern |P 〉 = |(r1, d1) · · · (rn, dn)〉,

a pattern |(0, dn+1) · · · (0, dn+m)〉 of m packets each with routing qubit set to |0〉 and a set of

auxiliary qubits initialized to state |0〉 the following transformation occurs:

| (r1, d1) · · · (rn, dn)
︸ ︷︷ ︸

|P 〉: from top

〉| (0, dn+1) · · · (0, dn+m)
︸ ︷︷ ︸

from left

〉 |00 · · · 0〉aux
QSC(n,m)−−−−−−→

| (r′1, d′1) · · · (r′m, d′m)
︸ ︷︷ ︸

on right

〉| (0, d′m+1) · · · (0, d′n+m)
︸ ︷︷ ︸

bottom

〉 |ΨP 〉aux (18)

where if R1 = {|ri, di〉 ∀ ri = 1}, 1 ≤ i ≤ n, is the set of valid input packets and R2 =

{|r′j , d′j〉 ∀ r′j = 1}, 1 ≤ j ≤ m, is the set of valid packets at the outputs then R2 = R1. Here

|00 · · · 0〉aux represents the state of a set of auxiliary qubits all of which are in state |0〉.

In a crossbar network, a subset of inputs can potentially be matched to more than one set of

outputs. Moreover, even if an input set can be matched to only one output set, it is possible

that several one-to-one input-output maps within these sets realize the matching. Therefore,
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some form of a routing algorithm is needed to fix the matched output set and the input-output

mapping for a capacity achieving input pattern. If a quantum crosspoint is configured by using

only the information contained in the quantum packets incident on its inputs, then we call such

a quantum crosspoint as a self-routing crosspoint. A quantum sparse crossbar concentrator built

using such crosspoints is called a self-routing quantum sparse crossbar concentrator. Hence, a self-

routing QSC(n, m) is a sparse crossbar network built using self-routing quantum crosspoints

which realizes all maps of the kind given in Eqn. (18).

We describe such an algorithm in the next section. The auxiliary qubits ensure reversible

operation as their final state, |ΨP 〉, encodes the state of the crossbar network, i.e., the states of

the internal crosspoints or equivalently the input-output mapping.

4.1 Self-Routing Quantum Crosspoints

In this section we give the design of self-routing quantum crosspoints and a routing scheme

for sparse crossbars composed of such crosspoints.

A self-routing n × m quantum sparse crossbar is derived from a classical sparse crossbar

structure as follows: The crosspoints in the classical sparse crossbar are replaced by quantum

crosspoints, the circuit for which is given in Figure 4. Here the upper input with packet |r1, d1〉

corresponds to the input line incident on a crosspoint from the top and the lower input with

packet |r2, d2〉 corresponds to the input line coming in from the left. The data bit strings d1, d2

and the routing bits r1, r2 are shown separately for clarity. Each crosspoint uses an auxiliary

control qubit initialized to state |0〉, which is then set according to the map in Figure 5 and used

to control the setting (“through” or “cross”) of the switch gate. When the control qubit is set

to state |1〉, the input packets get swapped and when the control qubit is in state |0〉, the input

packets go through unchanged. In the crosspoint circuit the CNOT gate functions as a copier

which sets the state of the control qubit to |r2〉. This qubit is then used to control the two swap

gates which switch r1, r2 and d1, d2 respectively. Thus, the input-output mapping performed by

the quantum crosspoint can be represented as:

|r1, d1, 0, d2〉 |0〉
Crosspoint−−−−−−−→
Through

|r1, d1, 0, d2〉 |0〉

|r1, d1, 1, d2〉 |0〉
Crosspoint−−−−−−−→

Cross
|1, d2, r1, d1〉 |1〉 (19)

We can see that the auxiliary control qubit is always set to state |r2〉, i.e., the packets are swapped

when the routing qubit of the packet coming in from the left (r2) is in state |1〉 and go through
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r
′

2r2

|0〉 |r2〉
c

d1

d2

d
′

1

d
′

2

r
′

1r1

Fig. 4: Circuit for the quantum crosspoint.

Inputs Outputs

r2 r1 r′2 r′1 d′2 d′1 State

0 0 0 0 d2 d1 Through

0 1 0 1 d2 d1 Through

1 0 0 1 d1 d2 Cross

1 1 1 1 d1 d2 Cross

Fig. 5: Input-output map for a quantum crosspoint.

unchanged when this qubit is in state |0〉. Although the switch control is determined fully by

just r2, we cannot use its corresponding qubit by itself (without the auxiliary control qubit) to

set the switch. This is because the qubit for r2 is a part of the packet incident on the lower

input and itself needs to be switched along with that packet, so although this qubit can act

as a control qubit for all the rest of the qubits in the packet, it cannot be a control qubit for

switching itself. Also, we are not using r1 in the switch to determine the routing state, but this

bit is still relevant as eventually at the output of the concentrator valid packets are identified

by examining the routing bit values. Another reason to consider r1 is the fact that crosspoint

switches are interconnected to form the crossbar, and the packet from the upper input at one

crosspoint switch may be incident at the lower input of a switch in later stages. In this scenario

the qubit corresponding to r1 would be the auxiliary control for this later stage switch. As the

state of the quantum crosspoint is determined fully by just using the information about the

routing bits from the two input packets, the paths in the sparse crossbar are determined in a

self-routing fashion.

4.2 The Self-Routing Scheme

Starting from input 1, the routing of packets proceeds from top to bottom in a column for an

input and then to next higher numbered input in the next column. The control qubit is not

restored to its original state immediately, we give a method to restore the control qubit at the

output of the concentrator in Section 7.

Note that unlike in the classical case, all n inputs (plus the m additional inputs from the left)

have quantum bit strings incident on them. We distinguish the subset of inputs having packets

for concentration by the setting the routing qubits in the headers of packets at these inputs to

1. A self-routing quantum concentrator derived from a classical fat-slim (5, 3)-sparse crossbar

concentrator is given in Figure 6. The square boxes in Figure 6 indicated by letters A–I are

quantum crosspoints. In this concentrator valid packets (packets with routing bit 1) come only
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Fig. 6: Self-routing fat-slim QSC(5,3): (a) Crossbar structure (b) Crosspoint sequence in routing

(c) Example for self-routing: Inputs 1, 4 and 5 are concentrated.

on inputs 1–5, and if the input pattern is capacity achieving, they exit only on outputs 1–3.

These inputs and outputs are indicated by arrows in the figure. In the process of self-routing,

the crosspoints are traversed from top to bottom in a column and from left to right in a row. The

crossbar in Figure 6(a) is redrawn in Figure 6(b) to show the sequence in which the crosspoints

are traversed during routing. Any sparse crossbar can be redrawn in this way if we rotate it

counter-clockwise to make the diagonal vertical and write down the sequence of crosspoints

encountered as we traverse from left to right. As a result of this redrawing we can see that

all crosspoints lying on the diagonals which are oriented from top right to bottom left in the

original crossbar form one vertical stage in the rotated version, e.g., G, E and H, F which lie on

a diagonal in Figure 6(a) form independent stages in the crossbar in Figure 6(b). Note that D,

C and B also lie on a single diagonal but since B and C are disjoint with each other and with

D, they can be shifted from the second stage to the first, as shown in Figure 6(c). Figure 6(c) is

Figure 6(b) with the inputs and outputs reordered to clearly show the planar and multi-stage

structure of the sparse crossbar.

We now give an example to elucidate the self-routing process. Consider an input concentration

pattern with valid packets at inputs 1, 4 and 5 for the crossbar shown in Figure 6(c), i.e., only

packets appearing at inputs 1, 4 and 5 have routing bits set to 1. At all the other inputs the

incident packets have routing bits set to 0. At crosspoint A the upper input, i.e., input 4 has

a valid packet and the lower input has a packet with routing bit set to 0. Thus, this situation

corresponds to the r1 = 1, r2 = 0 case in Figure 5 and A is set to pass the packets through

unchanged. Proceeding to the next stage, we see that at crosspoint D, the routing bit of the

packets at both the lower and upper inputs is 1, hence D swaps its input packets onto its
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outputs. Continuing in this way we see that the packet from input 1 takes the path A→D→G to

output 1. Similarly the packets from input 4 and input 5 take the paths D→E→H and G→H→I to

outputs 2 and 3 respectively. The switch settings and the packet routes are shown in Figure 6(c).

The routes taken by the valid packets is shown by solid lines while the routes taken by packets

with routing bit equal to 0 are shown by dashed lines. Note that the path lengths between all

the inputs and outputs are not equal, hence we need to introduce appropriate delay to make

them all equal, accordingly, all output lines are extended till the end. Output lines 4 and 6 are

not extended just to maintain clarity in the drawing but may be considered to extend till the

last output stage.

The intuition behind the routing scheme is as follows: In the rotated crossbar as shown in

Figure 6(b) the upper and lower input lines to a switch correspond to the lines coming in to the

same switch from the top and left respectively in the original unrotated version. Similarly the

upper and lower outputs in the rotated switches correspond to the line going out to the right

and bottom respectively in the original unrotated switches. Hence, giving routing priority to

the packet at the lower input in a quantum crosspoint is equivalent to routing according to the

packet coming in from the left in the unrotated crossbar. If the routing bit of the lower packet

is 1 then switch is set in a cross state, this is equivalent to passing a valid packet coming in

from the left to the right irrespective of the packet incident from the top. Thus, once a valid

packet is routed from the top to the right, it goes through unimpeded to the end of the row, in

other words, once an input is matched to an output this decision remains unchanged for the

subsequent duration of the routing process. The crosspoint is set in a through state when the

packet at the lower input in the rotated switch has its routing bit equal to 0, this corresponds

to a turn from left to the bottom in the unrotated crossbar. This observation combined with the

previous argument means that in a column of the unrotated crossbar a packet gets passed from

top to bottom from one row to the next until it encounters a crosspoint where the packet from

the left has a routing bit set to 0.

This self-routing scheme can be used for any sparse crossbar structure, it is not limited to

concentrators. An interesting question to ask is whether all known optimal sparse crossbar

concentrator structures allow concentration when a self-routing scheme of the form described

above is used to route packets. In the subsequent sections we prove that while this is not true

for all optimal sparse crossbar concentrators, it holds for fat-slim and banded crossbars.
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5 SELF-ROUTING ON QUANTUM SPARSE CROSSBAR CONCENTRATORS

We prove that the self-routing scheme described in Section 4.1 concentrates packets up to the

output capacity of the concentrator, for two families of sparse crossbar structures, namely the fat-

slim and banded crossbars. All the proofs are given for a quantum input assignment consisting

of a single concentration pattern. This is sufficient as the linearity of quantum systems implies

that, for any general input quantum concentration assignment, these results apply to every

concentration pattern contained in its superposition and hence to the entire input assignment.

We first introduce some notation that will be used throughout the rest of the paper.

5.1 Notation

For a quantum (n, m)-sparse crossbar network (n ≥ m) in which packets are routed using our

self-routing scheme, we use the following notation:

1) The set of inputs is denoted by I = {1, 2, . . . , n} and the output set by O = {1, 2, . . . ,m}

where 1 ≤ m ≤ n.

2) The n×m adjacency matrix, A, is given by:

A = {aij} =






0, no crosspoint between input i and output j,

1, crosspoint between input i and output j.

3) Ai = {j : for all aij = 1, 1 ≤ i ≤ n}, is the neighbor set for input i, i.e., the set of outputs

which can be connected to input i.

4) Xr = {x1, x2, . . . , xr} is an ordered set of r distinct inputs, i.e., xi ∈ I, 1 ≤ i ≤ r, and

x1 < x2 < · · · < xr for all r = 1, . . . ,m.

5) Yr = {y1, y2, . . . , yr} is the set of outputs to which the inputs in Xr are matched using self

routing with output yi being matched to input xi, where, yi ∈ Axi , i = 1, . . . , r. If input xi

can not be matched to any output then yi = ∅, the empty set.

6) We denote subsets of Yr as follows: Y0 = ∅, the empty set, Yb = {y1, y2, . . . , yb}, and

Yb
a = {ya, ya+1, . . . , yb}, ∀ a ≤ b ≤ r.

We now show that using the self-routing scheme described above in Section 4.2, certain fam-

ilies of sparse crossbar concentrators, namely fat-slim and banded crossbar concentrators can

correctly route any capacity achieving input pattern.

Lemma 1. Let Z ⊆ O be the subset of outputs to which packets have already been matched, using

self-routing, before routing begins on input xi, 1 ≤ i ≤ r. Then, the output yi, to which input xi is
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Input xi

Output yi

Z

Axi

Fig. 7: Output matching yi for input xi.

matched is given by yi = minz {z ∈ Axi ∩ Z ′}, where Z ′ = O \ Z is the complement of the set Z .

Proof: All outputs which have been concentrated to (matched) before routing the packet on

input xi, (i.e., in Z) correspond to rows which have a packet with routing bit r = 1 coming

from the left on them. We know from the table for the auxiliary control qubit (Figure 5) that

all crosspoints in rows corresponding to set Z will be set to the “cross” state, see Figure 7.

This means that only a crosspoint from the set of rows corresponding to Z ′ will be set to the

“through” state. This in turn means yi ∈ Z ′. Also, obviously, yi ∈ Axi . Thus, yi ∈ Axi ∩Z ′. Since

the routing process proceeds from the top to bottom, i.e., in increasing order of row/output

number, the lowest numbered available output is matched. Hence, yi = minz{z ∈ Axi ∩ Z ′}.

Lemma 2. Let yi be the output to which input xi is matched, 1 ≤ i ≤ r. Then,

yi = minz {z ∈ Axi ∩ (Yi−1)′}

Proof: As the routing of packets at inputs is initiated in increasing order of input index from

left to right, the packets at inputs x1, . . . , xi−1 are routed before routing starts on input xi. Thus,

the set of outputs matched before routing starts on input xi is Yi−1. Substituting Z = Yi−1 in

Lemma 1 we get the desired result.

Lemma 2 essentially asserts that, at any input, the first or lowest numbered unmatched output

is selected as a match for that input during self-routing. If an input xi cannot be matched to

any output in its neighbor set Axi , then yi = ∅.

Lemma 3. If i /= j and yi = minz {z ∈ Axi ∩ (Yi−1)′} /= ∅ and yj = minz {z ∈ Axj ∩ (Yj−1)′} /= ∅.

Then, yi /= yj , 1 ≤ i, j ≤ r ≤ m.

Proof: Without loss of generality, assume i < j, then yi ∈ {y1, . . . , yj−1} = Yj−1. Also yj =

minz{z ∈ Axj ∩ (Yj−1)′} implies that yj ∈ (Yj−1)′. Hence, yi /= yj .
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Fig. 8: Conflict in self-routing.

IF

Slim inputs Fat inputs

IS

Fig. 9: Partitions of fat-slim crossbar.

Lemma 3 implies that the non-empty elements of Y = {y1, . . . , yr} are all distinct. Thus, if

all the elements of Y exist, i.e., are non-empty, then Y forms a matching for the inputs in the

set X = {x1, . . . , xr}. Moreover, if such a matching exists for every r-input subset of a (n, m)-

sparse crossbar network, r ≤ m, then the network is an (n, m)-concentrator. From Lemma 2 the

matching Y corresponds to the outputs chosen by self-routing, therefore, the concentrator thus

obtained is self-routable. The theorem below follows:

Theorem 2. An (n, m)-sparse crossbar network is a self-routing concentrator if

yi = minz {z ∈ Axi ∩ (Yi−1)′} /= ∅

for all i = 1, . . . , r, and for every r-input ordered subset Xr = {x1, . . . , xr}, 1 ≤ r ≤ m.

A quantum concentrator derived by replacing classical crosspoints by quantum crosspoints

in a classical sparse crossbar concentrator is not always self-routable by the algorithm described

above. One such scenario is shown in Figure 8. For the sparse crossbar in this figure the union

of any k columns (or equivalently input neighbor sets) contains crosspoints in least k distinct

rows (or outputs) for all k = 1, . . . , 5, thus by Hall’s theorem it is a (9, 5)-concentrator. The set of

inputs with packets to be concentrated is given by X5 = {1, 3, 5, 6, 7}. The output to which an

input is matched by following the self-routing scheme is indicated by the shaded crosspoints,

therefore, input 1 is matched to output 1, input 3 to output 2 and so on. The crossed out

crosspoints indicate the outputs to which an input is not matched during self-routing. The

matched outputs for the first four inputs in X5 form the set Y4 = {1, 2, 3, 4}. Thus for input 7

(which is the fifth input in X5) we get y5 = minz {z ∈ A7∩(Y4)′} = minz{z ∈ {1, 2, 3, 4}∩{5}} = ∅.

Hence, this concentrator can not self-route all input subsets using the algorithm we described.

We now show that fat-slim and banded sparse crossbar concentrators can self-route by show-

ing that for these concentrators Theorem 2 is always satisfied. As part of the proofs we give

explicit expressions for the input-output mapping realized for concentration on these structures.
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5.2 Self-Routing Fat-Slim QSC(n, m)

Definition 4 (Fat-Slim Crossbar). An (n, m)-sparse crossbar network is called fat-slim if we can

partition the input set I into two subsets: IS (slim inputs) and IF (fat inputs) as shown in

Figure 9 with neighbor sets for input i described as follows:

i ∈ IS ⇔ 1 ≤ i ≤ m; Ai = π(i) (20a)

i ∈ IF ⇔ m < i ≤ n; Ai = {1, . . . ,m} = O (20b)

where π is a permutation on the elements of the set {1, . . . ,m}.

Every fat-slim n, m-sparse crossbar is an optimal (n, m)-concentrator with m(n − m + 1)

crosspoints [17]. We now show that any capacity achieving input pattern can be self-routed

on a fat-slim sparse crossbar concentrator.

Theorem 3. For the fat-slim QSC(n, m) let X = {x1, x2, . . . , xr} be any ordered r-input subset where

x1 < x2 < · · · < xr, ∀ r, 1 ≤ r ≤ m. Then, there exists an output matching, Y = {y1, y2, . . . , yr} for

X obtained as result of self-routing the fat-slim QSC(n, m) and it is given by

yi =






π(xi), xi ∈ IS ,

bi−(m−a), xi ∈ IF .

where B = {b1, . . . , ba} = ({π(xi) ∈ IS})′ such that b1 < b2 < · · · < ba, a = |B|, i = 1, 2, . . . , r, .

Proof: In the ordered r-input set X , let the first k (k ≤ r) inputs belong to the slim section

and the rest to the fat section.

If x1 ∈ IS , we get

y1 = min
z
{z ∈ Ax1 ∩ Y ′0} (from Lemma 2)

= min
z
{z ∈ Ax1 ∩O} (as Y0 = ∅)

= min
z
{z ∈ Ax1} = π(x1) (from Eqn. (20a)) (21)

Hence, y1 /= ∅ and Y1 = {π(x1)} is the set of matched outputs after routing on the first input.

Similarly for x2 ∈ IS we get

y2 = min
z
{z ∈ Ax2 ∩ (Y1)′} (from Lemma 2)

= min
z
{z ∈ {π(x2)} ∩{ π(x1)}′} (from Eqn. (20a))

= min
z
{z ∈ {π(x2)}} = π(x2) (as π(x1) /= π(x2))
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Continuing this way we get Yk = {π(x1), π(x2), . . . ,π(xk)} (22)

X is an ordered set of distinct inputs, which means that all the elements of Yk are distinct

and hence form a matching for the k slim inputs. If k = r then the proof is complete, else for

xk+1 ∈ IF we get

yk+1 = min
z
{z ∈ Axk+1 ∩ (Yk)′} (from Lemma 2)

= min
z
{z ∈ O ∩ {π(x1), . . . ,π(xk)}′} (from Eqns. (20b) and (22))

= min
z
{z ∈ {π(x1), . . . ,π(xk)}′} (23)

Note |{π(x1), . . . ,π(xk)}′| = m − k. Let B = {b1, . . . , bm−k} where bi ∈ (Yk)′, i = 1, . . . ,m −

k, such that b1 < b2 < · · · < bm−k. Thus, B is an ordered version of (Yk)′ = {π(x1), . . . ,π(xk)}′

with elements arranged in increasing order of magnitude, |B| = m− k. From Eqn. (23), yk+1 =

minz{z ∈ B} = b1.

Also, k ≤ r ≤ m and if k = r = m, i.e., all the slim inputs are concentrated then yk+1 = ∅ and

Yk is the matching corresponding to the concentration. If k < r then clearly yk+1 = b1 /= ∅ as

then B /= ∅. Thus Yk+1 = Yk ∪ {b1} = {π(x1), . . . ,π(xk), b1}.

For input yk+2 ∈ IF we get yk+2 = min
z
{z ∈ Axk+2 ∩ (Yk+1)′}

= min
z
{z ∈ O ∩ (Yk ∪ {b1})′}

= min
z
{z ∈ (Yk)′ ∩ {b1}′}

= min
z
{z ∈ B ∩ {b1}′} = b2

Continuing in the same fashion we get Yr
k+1 = {b1, . . . , br−k}. Now, |B| = m−k, i.e., k = m− |B|.

Thus, yk+i = bi = b(k+i)−k = bk+i−(m−|B|), i = 1, . . . , r − k. Hence, yi = bi−(m−a), i = k + 1, . . . , r,

a = |B|. Therefore, by Theorem 2 the fat-slim QSC(n, m) is self routing.

5.3 Self-Routing Banded QSC(n, m)

We show that for banded sparse crossbar concentrators our self-routing scheme can find an

r-output matching for any r input subset (r ≤ m).

Definition 5 (Banded Crossbar). An (n, m)-sparse crossbar is called banded if the set of inputs,

I, can be partitioned into three sets IU , IT and IL as shown in Figure 10 with the corresponding

neighbor sets for the inputs as follows:
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IU IT IL

(a) Partitions of banded crossbar, n =

9, m = 5, (n ≥ 2m− 1).

ILIU IT

(b) Partitions of banded crossbar,

n = 6, m = 5, (m ≤ n < 2m− 1).

Fig. 10: Partitions of banded sparse crossbar concentrator.

If n ≥ 2m− 1 then:

i ∈ IU ⇔ 1 ≤ i ≤ m− 1; Ai = {1, 2, . . . , i} (24a)

i ∈ IT ⇔ m ≤ i ≤ n−m + 1; Ai = {1, 2, . . . ,m} = O (24b)

i ∈ IL ⇔ n−m + 2 ≤ i ≤ n; Ai = {i− n + m, . . . ,m} (24c)

If m ≤ n < 2m− 1 then:

i ∈ IU ⇔ 1 ≤ i ≤ n−m + 1; Ai = {1, 2, . . . i} (25a)

i ∈ IT ⇔ n−m + 2 ≤ i ≤ m− 1; Ai = {i− n + m, . . . , i} (25b)

i ∈ IL ⇔ m ≤ i ≤ n; Ai = {i− n + m, . . . ,m} (25c)

Note that for n = 2m − 2, n −m + 2 = m > m − 1. Hence in this case, from Eqn. (25b), IT

does not exist, but this does not affect the proof below. Also, Eqns. (24a)-(25c) can be written

more succinctly as:

Ai = {max(1, i− n + m), . . . ,min(i, m)}, i = 1, . . . , n (26)

Every banded (n, m)-sparse crossbar is an optimal (n, m)-concentrator with m(n−m + 1) cross-

points [18].

Theorem 4. For the banded QSC(n,m) let X = {x1, x2, . . . , xr} be any ordered r-input subset where

x1 < x2 < · · · < xr, ∀ r, 1 ≤ r ≤ m. Then, there exists an output matching, Y = {y1, y2, . . . , yr} for

X obtained as result of self-routing the banded QSC(n, m) and it is given by

yi = max(i, xi − n + m) i = 1, 2, . . . , r.
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Proof: In X let k1 inputs belong to IU , k2 inputs belong to IT and the rest r−(k1+k2) inputs

belong to IL, i.e., {x1, . . . , xk1} ⊆I U , {xk1+1, . . . , xk1+k2} ⊆I T and {xk1+k2+1, . . . , xr} ⊆ IU .

Case I: n ≥ 2m− 1

For input x1 ∈ IU :

y1 = min
z
{z ∈ Ax1 ∩ Y ′0} (from Lemma 2)

= min
z
{z ∈ Ax1 ∩O} (as Y0 = ∅)

= min
z
{z ∈ {1, 2, . . . , x1}} = 1 (from Eqn. (24a))

Similarly for x2 ∈ IU

y2 = min
z
{z ∈ Ax2 ∩ (Y1)′}

= min
z
{z ∈ {1, . . . , x2} ∩{ 1}′}

= min
z
{z ∈ {2, . . . , x2}} = 2

Proceeding this way for all inputs in IU we get Yk1 = {1, 2, . . . , k1}.

For input xk1+1 ∈ IT :

yk1+1 = min
z
{z ∈ Axk1+1 ∩ (Yk1)

′} (from Lemma 2)

= min
z
{z ∈ {1, . . . ,m} ∩{ 1, . . . , k1}′} (from Eqn. (24b))

= min
z
{z ∈ {k1 + 1, . . . ,m}} = k1 + 1

We can get similar results for all other inputs in IT . Thus, Yk1+k2 = {1, . . . , k1 + k2}.

Also when 1 ≤ i ≤ k1 + k2, xi ∈ IU ∪ IT

⇒ xi ≤ n−m + 1 (from Eqns. (24a) and (24b))

⇒ xi − n + m ≤ 1

⇒ xi − n + m ≤ i = yi

Hence, yi = i = max(i, xi − n + m), for all 1 ≤ i ≤ k1 + k2.

For input xk1+k2+1 ∈ IL:

yk1+k2+1 = min
z
{z ∈ Axk1+k2+1 ∩ (Yk1+k2)

′}

= min
z
{z ∈ {xk1+k2+1 − n + m, . . . ,m} ∩{ k1 + k2 + 1, . . . ,m}} (27)

= min
z
{z ∈ {max(xk1+k2+1 − n + m, k1 + k2 + 1), . . . ,m}} (28)

= max(k1 + k2 + 1, xk1+k2+1 − n + m) (29)
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where Eqn. (27) follows from Eqn. (24c) and Eqn. (28) follows from the fact that we are taking

the intersection of 2 sets both of which cover continuous intervals of outputs up to output m.

We now use induction to prove the rest of the theorem.

Induction assumption:

yi = max(i, xi − n + m), for all i = k1 + k2 + 1, . . . , j − 1 where j ≤ r. (30)

Need to prove: yj = max(j, xj − n + m)

Proof for Induction: We have already proved the base case for i = k1 + k2 + 1. We will first show

that, for yi’s chosen according to Eqn. (30), yi−1 < yi.

Note yi−1 = max(i− 1, xi−1 − n + m) and yi = max(i, xi − n + m), thus we get the following

cases:

1) yi−1 = i− 1: We get the followings series of inequalities:

max(i, xi − n + m) ≥ i

⇒ yi ≥ i (as yi = max(i, xi − n + m))

> i− 1 = yi−1

2) yi−1 = xi−1 − n + m: We get the followings series of inequalities:

max(xi − n + m, i) ≥ xi − n + m

⇒ yi ≥ xi − n + m (as yi = max(i, xi − n + m))

> xi−1 − n + m = yi−1 (as xi > xi−1)

Thus yi > yi−1, i = k1 + k2 + 2, . . . , j − 1.

We know that Yk1+k2 = {1, . . . , k1+k2} is monotonically increasing, Yj−1
k1+k2+1 is monotonically

increasing and yk1+k2+1 = max(k1 + k2 + 1, xk1+k2+1 − n + m)) > k1 + k2 = yk1+k2 .

Thus Yj−1 = Yk1+k2 ∪ Y
j−1
k1+k2+1 is monotonically increasing, i.e., y1 < y2 < · · · < yj−1.

By Lemma 2, yj = min
z
{z ∈ Axj ∩ (Yj−1)′} (31)

By induction assumption yj−1 = max(j − 1, xj−1 − n + m).

Case 1: yj−1 = xj−1 − n + m

By monotonicity of Yj−1 we get maxz(z ∈ Yj−1) = yj−1 = xj−1 − n + m. Thus

(Yj−1)′ = Z ∪ {xj−1 − n + m + 1, . . . ,m}

where Z ⊆ {k1 + k2 + 1, . . . , xj−1 − n + m− 1}
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Therefore,

Axj ∩ (Yj−1)′ = {xj − n + m, . . . ,m} ∩ [Z ∪ {xj−1 − n + m + 1, . . . ,m}]

= ∅ ∪ {xj − n + m, . . . ,m} ∩{ xj−1 − n + m + 1, . . . ,m}

= {(max(xj − n + m, xj−1 − n + m + 1)), . . . ,m}

= {xj − n + m, . . . ,m} (as xj ≥ xj−1 + 1) (32)

Substituting in Eqn. (31) we get

yj = min
z
{z ∈ {xj − n + m, . . . ,m}} = xj − n + m (33)

Now yj−1 = max(xj−1 − n + m, j − 1) = xj−1 − n + m. Thus

xj−1 − n + m ≥ j − 1

⇒ xj−1 − n + m + 1 ≥ j

⇒ xj − n + m ≥ j (as xj ≥ xj−1 + 1) (34)

From Eqns. (33) and (34)

yj = max(xj − n + m, j) (35)

Case 2: yj−1 = j − 1

Yj−1 is monotonically increasing, i.e., y1 < y2 < · · · < yj−1 and yj−1 = j − 1

⇒ Yj−1 = {1, 2, . . . , j − 1}

⇒ (Yj−1)′ = {j, . . . , m}

Substituting in Eqn. (31) we get

yj = min
z
{{xj − n + m, . . . ,m} ∩{ j, . . . , m}}

= min
z
{max(xj − n + m, j), . . . ,m}

= max(xj − n + m, j) (36)

From Eqn. (35) and Eqn. (36) yj = max(xj − n + m, j) and proof for the induction is complete.

Case II: m ≤ n < 2m− 1

k1 inputs in S belong to IU , i.e., {x1, . . . , xk1} ⊆I U .

For y1, . . . , yk1 the proof is exactly the same as for the case n ≥ 2m − 1 and we get Yk1 =

{1, 2, . . . , k1} and hence, yi = i = max(i, xi − n + m), i = 1, . . . , k1.
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The next k2 inputs in X belong to IT , i.e., {xk1+1, . . . , xk1+k2} ⊆I T .

For yk1+1 we get

yk1+1 = min
z
{z ∈ Axk1+1 ∩ (Yk1)

′} (from Lemma 2)

= min
z
{z ∈ {xk1+1 − n + m, . . . , xk1+1} ∩{ 1, . . . , k1}′} (from Eqn. (25b))

= min
z
{z ∈ {xk1+1 − n + m, . . . , xk1+1} ∩{ k1 + 1, . . . ,m}}

Both the sets in the intersection contain a continuous series of outputs. Now obviously, xk1+1 ≤

m. Also, k1 + 1 ≤ xk1+1 as

k1 ≤ n−m + 1 (from Eqn. (25a))

⇒ k1 + 1 ≤ n−m + 2

≤ xk1+1 (from Eqn. (25b))

Thus, yk1+1 = min
z
{z ∈ {max(k1 + 1, xk1+1 − n + m), . . . , xk1+1}}

= max(k1 + 1, xk1+1 − n + m)

Treating this as the base case, we can use an induction argument similar to that employed

for inputs in IL for the case n ≥ 2m− 1 to show that

yi = max(i, xi − n + m), k1 + 1 ≤ i ≤ k1 + k2

⇒ yi = max(i, xi − n + m), xi ∈ IT (37)

For input xk1+k2+1 we get

yk1+k2+1 = min
z
{z ∈ Axk1+k2+1 ∩ (Yk1+k2)

′} (from Lemma 2)

= min
z
{z ∈ {xk1+k2+1 − n + m, . . . ,m} ∩ (Yk1+k2)

′} (38)

As yk1+k2 = max(k1 + k2, xk1+k2 − n + m), we get the following two cases:

Case 1: yk1+k2 = k1 + k2. Since y1 < y2 < · · · < yk1+k2 , and yk1+k2 = k1 + k2

Yk1+k2 = {1, 2, . . . , k1 + k2}

⇒ (Yk1+k2)
′ = {k1 + k2 + 1, . . . ,m} (39)
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Substituting Eqn. (39) in Eqn. (38) we get

yk1+k2+1 = min
z
{z ∈ {xk1+k2+1 − n + m, . . . ,m} ∩{ k1 + k2 + 1, . . . ,m}}

= min
z
{z ∈ {max(xk1+k2+1 − n + m, k1 + k2 + 1), . . . ,m}}

= max(xk1+k2+1 − n + m, k1 + k2 + 1) (40)

Case 2: yk1+k2 = xk1+k2 − n + m. Since y1 < · · · < yk1+k2 , maxz(z ∈ Yk1+k2) = yk1+k2 =

xk1+k2 − n + m.

⇒ (Yk1+k2)′ = Z ∪{xk1+k2−n+m+1, . . . ,m}, Z ⊆ {k1 +k2 +1, . . . , xk1+k2−n+m−1}.

Substituting this in Eqn. (40) we get

yk1+k2+1 = min
z
{z ∈ {xk1+k2+1 − n + m, . . . ,m} ∩ (Z ∪ {xk1+k2 − n + m + 1, . . . ,m})}

= min
z
{z ∈ ∅ ∪ ({xk1+k2+1 − n + m, . . . ,m} ∩{ xk1+k2 − n + m + 1, . . . ,m})}

= min
z
{z ∈ {max(xk1+k2 − n + m + 1, xk1+k2+1 − n + m), . . . ,m}}

= max(xk1+k2 − n + m + 1, xk1+k2+1 − n + m)

= xk1+k2+1 − n + m (as xk1+k2+1 ≥ xk1+k2 + 1) (41)

Also, xk1+k2+1 − n + m ≥ xk1+k2 + 1− n + m

= yk1+k2 + 1

≥ k1 + k2 + 1 (42)

where Eqn. (42) follows from the fact that yk1+k2 = max(xk1+k2 −n+m, k1 +k2). From

Eqns. (41) and (42), yk1+k2+1 = max(k1 + k2 + 1, xk1+k2+1 − n + m).

We can now use an induction argument for rest of the inputs in IL similar to the case

for n ≥ 2m− 1 to show that

yi = max(i, xi − n + m), k1 + k2 + 1 ≤ i ≤ r

⇒ yi = max(i, xi − n + m), xi ∈ IL.

Thus, by Theorem 2 the banded QSC(n, m) is self-routing.

6 AN EXAMPLE

We give an example to illustrate self-routing on a fat-slim QSC(5, 3). This concentrator is shown

in Figure 11. The quantum packets present at inputs 1, 3 and 4 are |Q1〉 = 1√
2
(|1, d11〉+ |1, d12〉),
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Fig. 11: Self-Routing on fat-slim QSC(5,3).

|Q3〉 = |1, d3〉 and |Q4〉 =
√

3
2 |1, d41〉 + 1

2 |1, d42〉 respectively. Inputs 2 and 5 do not have any

packets. Inputs 6, 7 and 8 correspond to the three dummy inputs on the left hand side from top

to bottom. Thus, in this case, the input quantum concentration assignment is given by

|Q1〉 ⊗ |0, d2〉 ⊗ |Q3〉 ⊗ |Q4〉 ⊗ |0, d5〉
8⊗

i=6

|0, di〉

=
( 1√

2
|1, d11〉+

1√
2
|1, d12〉

)
⊗ |0, d2〉 ⊗ |1, d3〉 ⊗

(√
3

2
|1, d41〉+

1
2
|1, d42〉

)

⊗ |0, d5〉 ⊗ |0, d6〉 ⊗ |0, d7〉 ⊗ |0, d8〉

=
√

3
2
√

2
|(1, d11), (0, d2), (1, d3), (1, d41), (0, d5), (0, d6), (0, d7), (0, d8)〉

+
1

2
√

2
|(1, d11), (0, d2), (1, d3), (1, d42), (0, d5), (0, d6), (0, d7), (0, d8)〉

+
√

3
2
√

2
|(1, d12), (0, d2), (1, d3), (1, d41), (0, d5), (0, d6), (0, d7), (0, d8)〉

+
1

2
√

2
|(1, d12), (0, d2), (1, d3), (1, d42), (0, d5), (0, d6), (0, d7), (0, d8)〉 (43)

Thus, the input is a superposition of four concentration patterns with co-efficients
√

3/
√

8,

1/
√

8,
√

3/
√

8 and 1/
√

8 respectively, shown by grey horizontal bars. Since all four patterns

are capacity achieving, the quantum assignment is also capacity achieving. The state of the

crosspoints is also shown. The shaded crosspoints route the valid packets on inputs 1, 3 and

4. Measurement at the output will result in one out of the four patterns shown at the output

being observed with probabilities 3/8, 1/8, 3/8 and 1/8 respectively. Therefore, data packets d11

and d12 are observed on output 1 with probability 1/2. Data packet d3 is observed on output

2 with probability 1 and data packets d41 and d42 are observed with probability 3/4 and 1/4

Page 29 of 72

http://mc.manuscriptcentral.com/tc-cs

Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

30

respectively on output 3. This output state can be explicitly written as:
√

3
2
√

2
|(1, d11), (1, d3), (1, d41), (0, d6), (0, d8), (0, d7), (0, d2), (0, d5)〉

+
1

2
√

2
|(1, d11), (1, d3), (1, d42), (0, d6), (0, d8), (0, d7), (0, d2), (0, d5)〉

+
√

3
2
√

2
|(1, d12), (1, d3), (1, d41), (0, d6), (0, d8), (0, d7), (0, d2), (0, d5)〉

+
1

2
√

2
|(1, d12), (1, d3), (1, d42), (0, d6), (0, d8), (0, d7), (0, d2), (0, d5)〉 (44)

The packets in the concentration patterns are written in increasing order of outputs, with outputs

1–3 on the right and outputs 4–8 located on the bottom. The dashed arrow shows the order

in which the crosspoints are traversed during routing, and the crosspoints in one stage are

indicated by the dotted diagonals. The initial state of the auxiliary qubits (control qubits) is

|000000000〉 which is a string of nine zeros, each corresponding to one crosspoint in the crossbar.

Recall that control qubits are set to 1 for the cross state and to 0 for the through state. The output

state of the auxiliary qubits is indicated beside the crosspoints. Thus, the output state of the

auxiliary qubits is |000110111〉 where the bits are written in order from top to bottom and left to

right, e.g., the third crosspoint for input 4 is set to a through state and this is the sixth crosspoint

in traversal order, so the sixth bit in the output state is 0.

6.1 Output for Capacity Exceeding Input Patterns

So far we have shown that in a fat-slim or banded QSC(n, m), self-routing can be used to

concentrate any capacity achieving input assignment pattern. We now present the case when

the input pattern exceeds the capacity of the crossbar.

For a self-routing QSC(n, m), consider a capacity exceeding input concentration pattern with r,

(r > m) valid packets. The ordered set of inputs with packets to concentrate is X = Xm ∪X r
m+1

where Xm = {x1, . . . , xm} and X r
m+1 = {xm+1, . . . , xr}. Since inputs are routed in increasing

order, all inputs in Xm are concentrated to the m outputs, i.e., Y = {y1, . . . , ym} = O. For input

xm+1: ym+1 = minz{z ∈ Axm+1 ∩ (Y)′} = minz{z ∈ Axm+1 ∩ ∅} = ∅. Similarly for the other inputs

in X r
m+1, the matching output is ∅, i.e., {ym+1, . . . , yr} = ∅. If yi = ∅, then all crosspoints in the

column for the corresponding input xi are set to cross state and the packet comes out on the

bottom, which is at output xi + m. Hence, the m lowest numbered inputs are concentrated and

the rest are connected to corresponding output at the bottom.

Page 30 of 72

http://mc.manuscriptcentral.com/tc-cs

Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

31

r1

r2

|0〉 c

d1

d2

|0〉

|0〉

|0〉

Copy InverseCrosspoint
Switch Switch

b

a

Node

r
′

1

r
′

2

d
′

1

d
′

2

r1

r2

Fig. 12: Circuit for restoring the control

quantum bit c.

Routing and
control qubits

Inverse switchCopy node

Fig. 13: A Banded QSC(5,3) with additions

for restoring the control quantum bits.

7 RESTORING AUXILIARY CONTROL QUANTUM BITS

Quantum information can be encoded in many different ways, such as the spin component of

basic particles like electrons or protons, or in the polarization of photons. But, such particles

can interact with the environment which leads to a corruption of their quantum state, a process

known as decoherence. Decoherence can be viewed as a measurement of a superposed quantum

state which collapses it to one of its basis states. This leads to a loss of information, but for a

quantum circuit, this information loss can be overcome if the ancillary qubits used as control

qubits are restored back to their original states, so that a corruption of their state does not affect

the observed quantum data. We now give a method to restore the state of the auxiliary bits

back to their original state, i.e., |0〉. For a single quantum crosspoint we can restore the control

quantum bit back to the state |0〉 as shown in Figure 12. The mapping performed is:

|(r1, d1), (0, d2)〉 |0〉c |00〉ab
Crosspoint−−−−−−−→
Through

|(r1, d1), (0, d2)〉 |0〉c |00〉ab (45)

Copy−−−→ |(r1, d1), (0, d2)〉 |0〉c |r10〉ab (46)

Inverse−−−−−→ |(r1, d1), (0, d2)〉 |0〉c |r10〉ab (47)

|(r1, d1), (1, d2)〉 |0〉c |00〉ab
Crosspoint−−−−−−−→

Cross
|(1, d2), (r1, d1)〉 |1〉c |00〉ab (48)

Copy−−−→ |(1, d2), (r1, d1)〉 |1〉c |1 r1〉ab (49)

Inverse−−−−−→ |(r1, d2), (1, d1)〉 |0〉c |1 r1〉ab (50)

At the output of the quantum crosspoint the two CNOT gates in the copy circuit copy the

values of bits r1 and r2 onto a and b respectively. This can be seen in Eqn. (46) and Eqn. (49).

The inverse switch then does a controlled swap of the two routing bits r1 and r2 before restoring

c back to its original state as can be seen in Eqn. (47) and Eqn. (50). Note that when the bit c
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is 0 at the output of the quantum crosspoint switch then the restoring portion does not modify

anything (see Eqns. (45)-(47)) as the corresponding auxiliary qubit is already in the state |0〉.

On measurement at the output we determine valid (not valid) packets by observing their

associated routing bit as 1 (0). But note that on final measurement in Figure 12 the routing bits

may not correspond to the data part of their packets, this is seen in Eqn. (50) where r1, d2 and

1, d1 are together instead of being 1, d2 and r1, d1. But the copying operation ensures that we

have a copy of the correct routing bits and can use these to distinguish the valid packets, for

example, in Eqn. (50) the correct values of the routing bits at the output are 1 for the upper

packet and r1 for the lower packet and these are present in the correct order, 1, r1, on qubits

a and b. Thus we can now consider a as the routing qubit for the packet at the upper output

and b as the routing qubit for the packet at the lower output.

This circuit restores the control qubit for a single crosspoint. For the entire self-routing QSC

we need a mirror image of the sparse crossbar concentrator concatenated with the QSC after

the copying of the routing bits is done at the output to restore the control qubits. This is shown

in Figure 13. Only the routing qubits are involved in restoring the state of the control qubits,

hence only these qubits are forwarded to the next stage after the QSC and are shown by dashed

lines. The dotted lines show the order of traversal of crosspoints and inverse switches.

8 CONCLUDING REMARKS

We have introduced quantum concentrators and presented two designs of such concentrators

using self-routing sparse crossbars. The complexity of these quantum concentrators can be

computed as follows:

We need, per crosspoint, one multi-qubit switch gate for swapping the nd +1 bit packets and

one CNOT gate for setting the auxiliary control bit. A switch gate for swapping one quantum

bit packets can be implemented using two CNOT gates and one CCNOT gate. Hence, we need

2(nd + 1) CNOT and nd + 1 CCNOT gates for the multi-qubit switch gate for a total of 2nd + 3

CNOT and nd + 1 CCNOT gates per crosspoint. Therefore, each quantum concentrator design

we presented uses m(n−m + 1)(2nd + 3) CNOT gates, m(n−m + 1)(nd + 1) CCNOT gates and

m(n−m + 1) auxiliary quantum bits.

For the restoring stage, there are m(n − m + 1) inverse switches and n + m copy nodes.

Each inverse switch has one switch gate for single qubits and one CNOT gate, which sums

up to three CNOT and one CCNOT gate. Each copy node has two CNOT gates and two extra

qubits. Thus the total cost for restoring the control qubits is 3m(n −m + 1) + 2(n + m) CNOT
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gates, m(n −m + 1) CCNOT gates and 2(m + n) extra qubits. Therefore, the overall cost for a

QSC(n, m) is m(n−m+1)(2nd +6)+2(n+m) CNOT gates, m(n−m+1)(nd +2) CCNOT gates

and m(n−m + 1) + 2(n + m) auxiliary quantum bits.

The depth of a QSC(n, m) is given by the maximum possible number of crosspoints between

an input and an output. It is easy to see that the longest input-output path is between input 1

and output m. For the fat-slim QSC(n, m), this path length is (n−m+1)+m−1 = n crosspoints

and for the banded QSC(n, m) the path length is (n−m + 1) + (m− 1) + (m− 1) = n + m− 1

crosspoints. Hence the depth of fat-slim QSC(n, m) is n and the depth of banded QSC(n, m) is

n+m−1. The time required to self-route is upper bounded by the depth of the concentrator, thus,

self-routing on a fat-slim QSC(n, m) has O(n) delay and self-routing on a banded QSC(n, m)

has O(n + m) delay.

Our results demonstrate that quantum principles can be applied to concentration problems in

packet switching. In proving that fat-slim and banded crossbar concentrators are self-routable,

we have assumed as input quantum assignments consisting of single patterns of classical

packets. This proves that classical fat-slim and banded crossbar concentrators are self-routable as

well. We also note that in our self-routing algorithm, when the capacity of m packets is exceeded,

only the m lowest numbered inputs have their packets concentrated. This introduces the issue of

fairness in routing. One way to ensure all inputs have an equal chance to be concentrated when

capacity is exceeded, is to create an equal superposition of the input packets at the outputs of

a crosspoint when both input packets have their routing bits equal to 1. The resulting output

quantum concentration assignment would then contain superposed concentration patterns in

which valid packets from inputs other than the lowest m are present.

Another direction to be explored further is the tradeoff between delay and fanout. We see

that the delay varies with topology, as the more “balanced” banded crossbar having a larger

delay of O(n+m) than the O(n) delay for the fat-slim crossbar. This seems to be a consequence

of the sequential nature of the routing algorithm. The dependence of delay on routing strategy

and topology is thus another direction for further research.

We have proved the self-routability of two families of sparse crossbar concentrators, namely

the fat-slim and banded crossbars. Finding other topologies which allow self-routing remains an

open question. The density of (n, m)-sparse crossbar concentrators among all n×m crossbars is

known [25] as are equivalence relations between different classical sparse crossbar concentrator

topologies [18]. A similar approach could be employed to characterize self-routable crossbar
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concentrators and find structures which belong to this class. In our algorithm, inputs were

routed in increasing order of their index. By changing the order in which this routing is done,

we could find other structures which allow self-routing. A trivial example would be to route

in decreasing order of inputs on a fat-slim crossbar with inputs 1 to (n−m) comprising the fat

section and inputs (n −m + 1) to n the slim section. In particular, an interesting direction for

further investigation would be to determine if there exist self-routing regular sparse crossbar

concentrators, i.e., those with fixed out-degree inputs and in-degree outputs.
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Abstract

Quantum switching networks are derived from conventional switching networks by replacing the classical

switches by quantum switches. We give the quantum circuit design and routing of an n×m network, called

a quantum concentrator that can direct quantum bit packets in arbitrary quantum states from any of its k

inputs to some of its k outputs, where 1 ≤ k ≤ m ≤ n. Our designs are based on sparse crossbars

which are rectangular grids of 2 × 2 crosspoints. Sparse crossbar concentrator structures with theoretically

minimum crosspoint complexities for any values of n and m are well-known but no self-routing algorithms

have been reported for such concentrators. We transform two such families of optimal concentrators, called

fat-slim and banded sparse crossbars into quantum networks and provide self-routing algorithms for these

families of concentrators. In this process we extend the notion of packet concentration to a quantum network

and design self-routing quantum crosspoints from quantum gates. We address issues critical to quantum

operation like reversibility and localized self-routing and give a rigorous proof that quantum fat-slim and

banded sparse crossbar concentrators are self-routable. The self-routing algorithms described in the paper

can be used for both quantum and classical sparse crossbar concentrators by the linearity property of all

quantum systems.

1 INTRODUCTION

The unique properties of quantum systems as manifested in the form of quantum parallelism

and entanglement have been used in finding efficient solutions for classically intractable prob-

lems [1], [2], [3], [4]. Any realistic scenario for the future scaling up of quantum systems

involves spatially distributed quantum devices which can interact with each other. Several

recent schemes for large scale quantum computer architectures based on solid-state silicon

have been proposed [5], [6] and are projected to provide the scalability required to achieve a

useful computational substrate. The issue of quantum data transport has been recognized as a

particularly critical requirement in upcoming silicon-based quantum computing technologies [7],

[8]. Spatially distributed components introduce the need for quantum wires over which quantum

data can be transmitted but building quantum wires and transferring quantum bits (qubits) is

a non-trivial operation since, in general, quantum bits cannot be copied as a consequence of
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the no-cloning theorem [9]. Proposals for building quantum wires in solid state technologies

include the quantum swapping and teleportation based architectures in [8], [7], [10]. The high

cost of such wires implies that the O(n2) wires needed to interconnect n quantum devices can

be a major bottleneck in implementing quantum systems.

This cost can be greatly reduced by using efficient switching network designs. The basic

premise behind this idea is to use arrangements of reconfigurable switches with input quantum

bits on their own quantum wires and then route them to the required destination. These switches

are represented using quantum circuits composed of quantum gates. In addition to reducing

wire count, reconfigurable quantum switches can form integral parts of the quantum data

distribution system in envisioned architectures for scalable quantum computing. For example,

in the Quantum Logic Array (QLA) microarchitecture proposed in [11], the high-level quantum

computer structure consists of logical quantum bits connected with a programmable commu-

nication network in which integrated switch islands are used to redirect quantum data from

nearby logical quantum bits.

The first result relating quantum circuits to permutations of quantum bits appears to be given

by Moore and Nilsson [12]. They presented a procedure by which a 6-stage or a 4-stage quantum

circuit with the use of ancillary quantum bits can be formed to realize any permutation of n

qubits. Although related to switching, Moore and Nilsson’s procedure cannot be viewed as

a quantum interconnection network as each choice of permutation is mapped to a different

quantum circuit by their procedure. Tsai and Kuo [13] used this approach to map unicast and

multicast assignments to quantum circuits consisting of C-NOT gates. The first quantum switch

network using reconfigurable switches to route groups of quantum bits was given by Shukla et.

al. in [14], [15]. This quantum network can permute quantum information packets between its n

inputs and n outputs. It was shown that this network realizes nn/2 permutations and can be used

to resolve blocking when transmitting classical packets by creating a superposition of packets

whenever they contend for the same wire in the network. Cheng and Wang [16] proposed a

quantum merge sorting-based network using O(n log3 n) gates, while Sue [17], [18] gave the

design of another quantum nonblocking network with O(n2) gates. Both of these networks can

realize all n! permutations. Switching network configurations suitable for quantum networks

have also been identified in [19] and Cheng et. al. [20] presented an application of quantum

routing to wireless networks.

All these networks realize ordered connection maps, i.e., the particular output to which an
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input is connected is specified beforehand. In this paper we focus on the quantum circuit design

and routing of concentrator switches that realize unordered connections between a set of inputs

and a set of outputs. Even though concentrator switches are not as versatile as those that can

realize ordered connections, classical analogs of such switches play a fundamental role in the

design of nonblocking switching networks [21], [22]. More recently, it has been shown that they

can also be used to design quantum multicast switching networks [29].

Formally, an (n,m)-concentrator is a switching network with n inputs and m outputs, 1 ≤

m ≤ n in which any set of k inputs can be routed over non-intersecting paths to some k

outputs, 1 ≤ k ≤ m, but without the order specified. This is unlike other switches such as

permutation networks that provide ordered connections between their inputs and outputs.

Switching networks can exhibit blocking where multiple input-output connections can share

the same path internally. The stronger requirement of ordered connections makes this problem

more severe, resulting in higher routing and hardware complexity. For example, the theoretical

lower bound for hardware complexity of permutation networks is O(n log n) [23] while that for

concentrators is O(n) [22].

A family of concentrators, called sparse crossbar concentrators, can be designed using a grid

or matrix of crosspoints with m rows and n columns where a crosspoint is placed between

column i and row j if there exists an edge between input i and output j. Explicit sparse crossbar

concentrator structures with theoretically minimum crosspoint complexities (O(m(n−m+ 1)))

for any arbitrary values of n and m are well-known [24], [25]. The main contribution of this

paper is to transform two such families of optimal concentrators, called fat-slim and banded

sparse crossbars into quantum networks and provide self-routing algorithms for these families

of concentrators.

We first give an interpretation of concentration in a quantum network. In a classical con-

centrator, packets for concentration are marked at inputs and these packets can be mapped

only one assignment at a time. In a quantum concentrator, packets consist of quantum bits and

thus represent a superposition of assignment patterns of packets which can be concentrated all

at once by such a network due to the principle of quantum parallelism. This aspect is what

distinguishes quantum concentrators from their classical counterparts. For example, consider a

concentrator in which three inputs, say X,Y and Z, have packets which have to be concentrated.

Suppose input X has two packets represented as x1 and x2, input Y has one packet y1 and input

Z has two packets z1 and z2. Y generates a “pure” packet while X and Z generate quantum
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packets by creating a superposition of both their respective packets, and all three input sources

then push their packets into a quantum concentrator. The outcome is that all the four possible

input packet patterns: (x1, y1, z1), (x1, y1, z2), (x2, y1, z1), (x2, y1, z2) are routed in parallel and

the output is a superposition of these four packet patterns each of which corresponds to the

output obtained by concentrating one of the input packet patterns.

In the process of designing a quantum concentrator, we address some issues particular to

quantum systems. One such issue is the reversibility constraint of quantum information pro-

cessing. All quantum operations are inherently reversible in nature. This notion of reversibility

is exactly the same as that commonly understood for any input-output mapping, i.e., given the

output state of a quantum system, the corresponding input state can be uniquely determined. A

“rectangular” structure like an (n,m)-sparse crossbar concentrator where the number of inputs,

n, is not equal to the number of outputs, m, is inherently non-reversible. We devise a way to

make (n,m)-crossbar concentrators “square” by using additional lines on the input and output

sides of such concentrators and ensuring that valid packets for concentration are routed only

among the original n inputs and m outputs.

Additionally, in a concentrator, a subset of inputs, say Is can, in general, be matched to

multiple subsets of outputs and a subset of outputs, say Os can be the matching for multiple

input subsets. Even when Os is the only matching for Is, there may be multiple settings for

the internal crosspoints which realize this matching. As a simple example, consider an (n,m)-

concentrator in which a k-input subset and a k-output subset are interconnected by a k× k full

crossbar, k ≤ m. Also assume that the k inputs in the k-input subset are not connected to any

other outputs. Then obviously this k-input subset can be matched to only one output set of size

k but all possible k! one-to-one maps are possible.

Thus, to ensure reversibility a routing algorithm is needed to determine the crosspoint settings

and fix the output matching subset for a given input subset. Even though efficient centralized

routing algorithms for optimal crossbar concentrators with O(log n) delay for a tree-connected

set of n processors and O(n log n) delay for a single processor are known [25], [26], they cannot

be adopted for quantum concentrators. It is critical to have a self-routing algorithm for quantum

concentration in which the state of a crosspoint is determined by using only the local information

from the incoming packet headers. An important property of self-routing packets is that the

control quantum bits used to configure the crosspoint settings can be restored back to their

original states easily thus preventing loss of information due to decoherence.
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The rest of this paper is organized as follows. In Section 2, we introduce the basic quantum cir-

cuit concepts that will be used in the design and routing of quantum concentrators. In Section 3,

we give a brief overview of classical sparse-crossbar concentrators. In Section 4 we present a

quantum packet concentrator model that will be used to describe our self-routing algorithms.

In Section 5, we define the functionality of quantum sparse-crossbar concentrators, present the

design of quantum sparse crossbar concentrators and describe a self-routing algorithm for such

concentrators. In Section 6, we prove the correctness of this algorithm for the optimal banded

and fat-slim quantum crossbar concentrators. In Section 7, we give an example to describe

the concentration process on a quantum sparse crossbar concentrator and address the issue

of routing more than m packets on an (n,m)-quantum crossbar concentrator. In Section 8, we

describe how to restore the state of auxiliary qubits to prevent decoherence. Section 9 gives the

cost analysis and the paper is concluded with remarks on remaining questions and future work

in Section 10.

2 QUANTUM CIRCUITS AND PACKETS

In this section we give a brief description of basic concepts related to quantum information,

quantum circuits, quantum gates, and quantum packets.

2.1 Qubits

The indivisible unit of classical information is the bit: an object that can take either one of

two values: 0 or 1. The corresponding unit of quantum information is the quantum bit or

qubit. Unlike a classical bit, a qubit can take values which are, in some sense, a combination of

the values 0 and 1, i.e., it can be simultaneously be both 0 and 1. Formally, a qubit’s state is

represented as a unit vector in a two-dimensional complex Hilbert space and is expressed as:

|ψ〉 = α |0〉+ β |1〉 , |α|2 + |β|2 = 1; α,β ∈ C (1)

The vectors |0〉 and |1〉 constitute an orthonormal basis for this space. These two vectors are

referred to as the computational basis vectors. We can perform a measurement that projects

the state of this qubit onto the computational basis, i.e., the measurement projects |ψ〉 onto the

basis {|0〉 , |1〉}. The outcome of the measurement is not deterministic— the probability that we

observe the result to be |0〉 is |α|2 and the probability that we observe the result to be |1〉 is |β|2.

α and β are referred to as the probability amplitudes of the states |0〉 and |1〉 respectively.

The state of an n-qubit system can be expressed as vector in a complex Hilbert space of

dimension 2n. This 2n dimensional space is a tensor product of the n two-dimensional spaces
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|x〉

|0〉 → 1√
2
(|0〉+ |1〉)

|1〉 → 1√
2
(|0〉 − |1〉)

H
H |x〉

(a)

Target |x〉

|c0〉

|c1〉

|c0〉

|c1〉

|(c0c̄1)⊕ x〉

Control

(b)

Source |s〉

|s⊕ t〉

|s〉

|t〉Target

(c)

c

|y〉

|x〉

(d)

|y〉

c

|x〉

(e)

Fig. 1: Quantum gates: (a) Hadamard gate (b) Controlled-controlled not gate (c) Controlled-not

(CNOT) gate (d) Controlled swap or switch gate (e) Switch gate made using CNOT gates.

representing individual qubits. The orthonormal basis for this space can be chosen as the

states in which each qubit has a definite value, either |0〉 or |1〉. A general normalized vector

representing an n-qubit state can be expanded in this basis as

|ψ〉 = α0 |00 · · · 00〉+ α1 |00 · · · 01〉+ · · ·+ α2n−2 |11 · · · 10〉+ α2n−1 |11 · · · 11〉

=
2n−1∑

i=0

αi |i〉 (2)

where we have associated with each string the number that it represents in binary notation,

ranging in value from 0 to 2n − 1. Here the αi’s are complex numbers satisfying
∑

i|αi|2 = 1. A

measurement of all n qubits by projection of each onto the {|0〉 , |1〉} basis, yields the outcome

|i〉 with probability |αi|2 [4].

2.2 Quantum Gates

The state of qubits is transformed using quantum gates and circuits composed of such gates. The

quantum gate formalism was first proposed by Deutsch [27]. A quantum gate is a linear, unitary

transformation on the space of qubit state vectors. The unitary nature of these transformations

implies that quantum gates are reversible, i.e., given the state of qubits at the output of a gate,

the input state can be uniquely determined. The unitarity also implies that the gates preserve

the norm of the input state which amounts to preserving probability. These requirements of

reversibility and norm preservation are basic axioms of quantum theory.

An example of a single qubit gate is the Hadamard gate, H , (Figure 1(a)) which transforms

the basis vectors |0〉 and |1〉 as

|0〉 H−→ 1√
2
(|0〉+ |1〉), |1〉 H−→ 1√

2
(|0〉 − |1〉) (3)

In the above mapping we say that the basis vectors |0〉 and |1〉 are put in an equal superposition

by the Hadamard gate, as after the transformation, the probability of observing either of the
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basis vectors at the output is equal to 1/2. Thus, the Hadamard gate can be considered a

quantum randomizer which takes a 0 or 1 bit and transforms it so that the output is either 0

or 1 with probability 1/2 [3].

A gate is completely specified by the mapping it performs on the basis vectors as all the rest

of the input states can be represented as vectors which are a linear combination of these basis

vectors. In the case of the Hadamard gate this means that an input qubit in the general state

α |0〉+ β |1〉 would be transformed to α√
2
(|0〉+ |1〉) + β√

2
(|0〉 − |1〉) = α+β√

2
|0〉+ α−β√

2
|1〉.

An n-bit quantum circuit can simultaneously act on all the 2n components of the input state

and transform them according to some specified mapping at once. This is the source of massive

quantum parallelism. To make this more clear, suppose we are interested in finding the properties

of a function f(i) which takes the n-bit binary string i as input. The table of values for f(i) is

of size 2n and is clearly infeasible to calculate for large n. But, with a quantum computer, Uf

acts according to

|i〉 |0〉 Uf−→ |i〉 |f(i)〉 (4)

When we write any two qubit states side-by-side, it means we are taking a tensor product, thus

|i〉 |0〉 = |i〉 ⊗ |0〉. We can put the input register consisting of the qubits corresponding to i in a

superposed state similar to the one in Eqn. (2):
( 1√

2
(|0〉+ |1〉)

)
⊗ · · ·⊗

( 1√
2
(|0〉+ |1〉)

)

︸ ︷︷ ︸
n qubits

=
1

2n/2

2n−1∑

i=0

|i〉 (5)

where we have taken the tensor product of the n qubits to get the complete state. By computing

f(i) only once, we can generate a state

1

2n/2

2n−1∑

i=0

|i〉 |0〉 Uf−→ 1

2n/2

2n−1∑

i=0

|i〉 |f(i)〉 (6)

All the global properties of f are encoded in this state and can be extracted if an efficient method

is devised. This is the kind of massive parallelism Shor used in his factorization algorithm [1].

This same parallelism enables us to probabilistically combine packets in quantum switching

networks. The input to the quantum switching network can be a superposition of multiple

packet assignments, all of which are routed in parallel to the outputs. The switching network

operates in different switch configurations for different packet assignments. We give a more

detailed explanation of this concept later in the paper for quantum concentrators.

Among all the gates which operate on multiple qubit inputs, the most widely-used gates are

the controlled quantum gates. A controlled gate’s function is determined by the state of some
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control qubits. For example, the controlled-controlled-not (CC-NOT) gate shown in Figure 1(b),

with two control qubits c0 and c1 performs the following transformation

|c0, c1, x〉
CC−NOT−−−−−−−→ |c0, c1, (c0.c̄1 ⊕ x)〉 (7)

Thus, it inverts x when c0 = 1 and c1 = 0. We use the notational convention |c0, c1, x〉 =

|c0〉 |c1〉 |x〉. If a gate becomes active when a control qubit is 1, then that is indicated by a solid

circle, (for c0) and if a gate becomes active when a control qubit is 0 then that is indicated by an

open circle, (for c1). The CC-NOT gate transforms the basis vectors |100〉 and |101〉 to |101〉 and

|100〉 respectively and leaves all the remaining six basis vectors unchanged. The qubit affected

by the operation of a controlled gate is called the target qubit. If we initialize x to 0, then this

gate can be viewed as a quantum comparator which sets the target qubit to |1〉 when c0 > c1 and

leaves it unchanged otherwise.

2.3 Quantum Copy and Switch Gates

The simplest controlled gate is the controlled-not (CNOT) gate shown in Figure 1(c). The

function of this gate is given by the mapping:

|s〉 |t〉 CNOT−−−−→ |s〉 |s⊕ t〉 (8)

Hence bit t is inverted when s = 1 and remains unchanged when s = 0. This gate functions as

a NOT gate for the lower or target qubit when the control qubit is in state |1〉. When t = 0 we

see that the mapping is of the form |s〉 |0〉 CNOT−−−−→ |s〉 |s〉, thus a CNOT gate can also be viewed

as a copier which copies the upper or source qubit on to the lower or target qubit when the

target qubit is initialized to state |0〉. Note that this copy operation can only be done when the

upper qubit is in one of the two basis states: |0〉 or |1〉. For a source qubit in the general state

|ψ〉 = α |0〉+ β |1〉, the mapping is given by:

(α |0〉+ β |1〉)s |0〉t
CNOT−−−−→ α |00〉st + β |11〉st (9)

The output state is either 00 with probability |α|2 or 11 with probability |β|2 and we have copied

0 and 1 bits to the target. We shall use such gates in our concentrator design.

The basic gate used to build quantum switching networks is the controlled swap gate or

switch gate, which is shown in Figure 1(d). A switch gate is a multi-qubit gate which swaps

two sets of qubits or quantum packets when a control qubit c is |1〉 and passes them through

unchanged, otherwise [14], [15]. These two states of the switch gate are referred to as the cross
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and through states respectively. Thus, this gate can be used as a reconfigurable 2× 2 switch to

route quantum bit packets. The function of this gate can be represented as

|x〉 |y〉 |0〉c
Switch−−−−−→
Through

|x〉 |y〉 |0〉c (10)

|x〉 |y〉 |1〉c
Switch−−−−→
Cross

|y〉 |x〉 |1〉c (11)

where x and y are equal length binary strings. The thick lines in Figure 1(d) for x and y indicate

that there are multiple qubits on them. An implementation of the switch gate with strings x and

y of length 1, using two controlled-not (CNOT) and one CC-NOT gate is shown in Figure 1(e).

If x = x1x0 and y = y1y0 are strings of length two, then the transformation done by the switch

gate is given by:
|x1, x0〉 |y1, y0〉 |0〉c

Switch−−−−−→
Through

|x1, x0〉 |y1, y0〉 |0〉c (12)

|x1, x0〉 |y1, y0〉 |1〉c
Switch−−−−→
Cross

|y1y0〉 |x1, x0〉 |1〉c (13)

3 CLASSICAL SPARSE CROSSBAR CONCENTRATORS

An (n,m)-sparse crossbar network is a matrix of crosspoints or switches with m rows and n

columns. Each crosspoint acts as a simple 2 × 2 switch which can either swap the data on its

two inputs onto its outputs or pass them through unchanged. We refer to these two states of

the crosspoint as the “cross” state and the “through” state respectively.

An (n,m)-sparse crossbar concentrator is a (n,m)-sparse crossbar in which any k inputs,

k ≤ m, can be routed over nonintersecting paths to some k outputs. Any sparse crossbar is

a concentrator if its crosspoint distribution is such that the constraints of Hall’s theorem are

satisfied. This theorem is stated below:

Theorem 1 (Hall’s Theorem). Let O be a finite set and let Y1, Y2, . . . , Yr be arbitrary subsets of O.

There exist distinct elements yi ∈ Yi, 1 ≤ i ≤ r if and only if the union of any k of Y1, Y2, . . . , Yr

contains at least k elements.

Let the set O in the theorem denote the set of outputs of a sparse crossbar and Y1, Y2, . . . , Yr

represent the neighbor sets of some r inputs s1, s2, . . . , sr respectively, i.e., Yi is the subset of

outputs in O to which input si can be connected, 1 ≤ i ≤ r. Then if the union of Y1, Y2, . . . , Yr

contains at least r outputs for any choices of s1, s2, . . . , sr in the input set, and any r, 1 ≤ r ≤ m,

then Hall’s theorem implies that the sparse crossbar is a concentrator.

Nakamura and Masson in [28] gave a lower bound of m(n − m + 1) on the crosspoint

complexity, i.e., number of crosspoints, for (n,m)-sparse crossbar concentrators by showing

that each output needs to share crosspoints with at least n − m + 1 inputs. Oruç et al in [24]
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m outputs

n inputs

(a) Fat-slim crossbar concentrator.

m outputs

n inputs

(b) Banded crossbar concentrator.

Fig. 2: Classical sparse crossbar concentrators, n=9, m=5.

and [25] gave explicit crossbar structures of optimal concentrators which achieved this bound

for any n and m. They used Hall’s theorem to show that certain n×m sparse crossbar structures

with exactly m(n−m+ 1) crosspoints can act as concentrators.

Two such optimal concentrators, the fat-slim and banded sparse crossbar concentrators, which

we shall be using extensively, are shown in Figure 2. As seen in Figure 2(a), in a fat-slim

crossbar concentrator where, unlike in the original construction, we placed the slim part on the

left, the input columns can be divided into a fat portion of n −m inputs in which each input

is connected to all outputs and a slim portion of m inputs in which each input is connected

to a distinct output. The crosspoints in the slim part do not need to fall on a diagonal, any

one-to-one connection between the m inputs and m outputs would work. In a banded crossbar

concentrator (Figure 2(b)) all the crosspoints form a transverse band in the middle. Note that

in these sparse crossbars each of the m outputs is connected to n−m+ 1 inputs.

4 QUANTUM PACKETS AND CONCENTRATION ASSIGNMENTS

A quantum packet consists of a set of data qubits and one additional qubit which we refer

to as the routing qubit. We assume that quantum packets composed of qubits are routed over

a quantum concentrator. Reversibility considerations in quantum systems mean that unlike

classical systems no connecting wire or input/output line can remain empty. We use the routing

qubit to overcome this constraint, the routing qubit is set to |1〉 to indicate the presence of a

quantum packet and to |0〉 to indicate an empty wire or absence of a packet. Whenever we write

|a〉, where a is a binary variable, then this represents the state of a quantum bit. The binary

variable itself is indicated as a. A quantum packet is defined as [29]:

Definition 1 (Quantum packet). Let an input have m nd-bit packets, d1, . . . , dm. If packet di is

to be concentrated with probability pi, then the source at this input feeds into the concentrator

a quantum packet of the following form: m∑

i=1

αi |ri, di〉 (14)

where |αi|2 = pi and ri = 1. We refer to the individual components of the quantum packet, the
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bit strings (ri, di) as classical packets. The ri denote the routing bits in the classical packets. The

length of the quantum packet is nd + 1 qubits. We refer to these strings as classical packets as

they represent a basis state (with no superposition) of the constituent qubits and any group of

quantum bits in a basis state are conceptually equivalent to a group of classical bits having the

same value.

If the input source has no packets to concentrate then the empty line is indicated by a single

nd+1-bit string in which the routing bit is set to 0, and the data bits can be set to any arbitrary

value.
An input concentration pattern for an n-input concentrator is a sequence of classical packets,

each of which belongs to a quantum packet on the n inputs from top to bottom. A quantum

concentration assignment is a superposition of a set of concentration patterns. We define these

terms formally as follows:

Definition 2 (Quantum concentration assignment). A quantum concentration assignment for an

n-input concentrator is a superposition of a set of t concentration patterns of the form:
t∑

j=1

γj |(rj1, dj1), · · · , (rjn, djn)〉 (15)

where the concentration pattern |(rj1, dj1), · · · , (rjn, djn)〉 consists of n classical packets in which
(rji, dji) is the jth classical packet at input i, and |γj |2 is the probability of the jth concentration

pattern being realized with
∑t

j=1|γj |2 = 1.

If the quantum packets at all the inputs are independent and of the kind given in Eqn. (14)

then the quantum assignment can be expressed as a tensor product of the quantum packets as

follows:
n⊗

i=1

|Qi〉 =
n⊗

i=1

( ti∑

j=1

αij |rij , dij〉
)

(16)

where |Qi〉 =
∑ti

j=1 αij |rij , dij〉 is the quantum packet on input i. The tensor product in Eqn. (16)

expanded to a quantum concentration assignment of the form in Eqn. (15) contains
∏n

i=1 ti

concentration patterns.
As an example, consider three inputs indexed by 1, 2 and 3 having the quantum packets:

1√
2
(|1, d11〉+ |1, d12〉), |1, d21〉 and 1√

3
|1, d31〉+

√
2√
3
|1, d32〉 respectively. Then the quantum concen-

tration assignment is given by:

1√
2
(|1, d11〉+ |1, d12〉)⊗ |1, d21〉 ⊗

(
1√
3
|1, d31〉+

√
2√
3
|1, d32〉

)

=
1√
6
|(1, d11), (1, d21), (1, d31)〉+

1√
3
|(1, d11), (1, d21), (1, d32)〉

+
1√
6
|(1, d12), (1, d21), (1, d31)〉+

1√
3
|(1, d12), (1, d21), (1, d32)〉 (17)

Page 46 of 72

http://mc.manuscriptcentral.com/tc-cs

Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

12

Thus the quantum concentration assignment consists of a superposition of four concentration

patterns, two of which have a probability 1/3 and the other two a probability 1/6 of being

observed on measurement. A quantum concentrator can route such patterns contained in the

input quantum concentration assignment in parallel.

5 QUANTUM SPARSE CROSSBAR CONCENTRATORS

An input concentration pattern for a concentrator is said to be capacity achieving if no greater

than m packets in the pattern have their routing bits equal to 1, where m is the number of

outputs of the concentrator. We call a quantum concentration assignment capacity achieving if

all of its concentration patterns are capacity achieving. Also, we refer to packets with routing

bit set to 1 as valid packets.

A quantum sparse crossbar is obtained from a classical crossbar by replacing the classical

crosspoints by quantum crosspoints which can switch quantum packets. A quantum crosspoint

can be viewed as a configurable 2× 2 switch which either swaps or passes through unchanged

to its outputs the two quantum packets incident at its inputs. Reversibility in quantum systems

implies that, for a quantum sparse crossbar, unlike a classical sparse crossbar, each crosspoint

needs to have qubits coming in on each of its two inputs and qubits leaving on each of its

outputs. As mentioned earlier in Section 4, an absence of a packet or an empty wire is indicated

by a quantum bit string with the routing bit set to 0. Thus, in the quantum domain, the m

empty wires coming in from the left in an n×m sparse crossbar can be represented by blocks

of quantum bits in which the routing bit is set to 0. We can imagine m additional packet sources

at these wires which generate quantum bit blocks in which the routing bit is always set to 0.

The same reasoning can be applied to the n empty wires leaving the sparse crossbar at the

bottom. This means that they can be viewed as n additional outputs and if the sparse crossbar

is a concentrator then the exiting quantum bit strings on these outputs have their routing bits

equal to 0 as long as the input pattern is capacity achieving. This effectively creates a “square”

(n+m) × (n+m) crossbar network from a “rectangular” n×m network in which only the n

inputs (on the top) can get valid packets. If the sparse crossbar is a concentrator and the input

pattern is capacity achieving then all the valid packets are concentrated to the m outputs on

the right hand side. If we number the inputs on the top 1 to n from left to right, the inputs on

the left n+ 1 to n+m from top to bottom, the outputs on the right 1 to m and outputs on the

bottom m+ 1 to m+ n as shown in Figure 3 then:
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n

n+ 1

n+m

1

2

m

m+ 2 m+ nm+ 1

INPUTS

OUTPUTS

1 2

Fig. 3: Numbering of inputs and outputs in an n×m quantum sparse crossbar.

Definition 3. An n × m quantum sparse crossbar (n ≥ m) is called an (n,m)-quantum sparse

crossbar concentrator and denoted QSC(n,m) if, given any capacity achieving input pattern with

k valid packets, where k ≤ m, the k packets can be routed to some k of the first m outputs.

That is, for a capacity achieving input concentration pattern |P 〉 = |(r1, d1) · · · (rn, dn)〉, a pattern

|(0, dn+1) · · · (0, dn+m)〉 of m packets, each with routing qubit set to |0〉 and a set of auxiliary

qubits initialized to state |0〉 the following transformation occurs:

| (r1, d1) · · · (rn, dn)︸ ︷︷ ︸
|P 〉: from top

〉| (0, dn+1) · · · (0, dn+m)︸ ︷︷ ︸
from left

〉 |00 · · · 0〉aux
QSC(n,m)−−−−−−→

| (r′1, d′1) · · · (r′m, d′m)︸ ︷︷ ︸
on right

〉| (0, d′m+1) · · · (0, d′n+m)
︸ ︷︷ ︸

bottom

〉 |ΨP 〉aux (18)

where if R1 = {|ri, di〉 ∀ ri = 1}, 1 ≤ i ≤ n, is the set of valid input packets and R2 =

{|r′j , d′j〉 ∀ r′j = 1}, 1 ≤ j ≤ m, is the set of valid packets at the outputs then R2 = R1. Here

|00 · · · 0〉aux represents the state of a set of auxiliary qubits, one per each crosspoint, and all of

which are in state |0〉.

The auxiliary qubits ensure reversible operation as their final state, |ΨP 〉, encodes the state of

the crossbar, i.e., the states of the internal crosspoints or equivalently the input-output mapping.

In a quantum sparse crossbar concentrator, a subset of inputs can potentially be matched to

more than one set of outputs. Even if an input set can be matched with only one output set, it

is possible that several one-to-one maps realize this matching. Therefore, a routing algorithm

is needed to fix an output set and an input-output mapping for a capacity achieving input

pattern. We describe such an algorithm in the next section.

If a quantum crosspoint is configured by using only the information contained in the quantum

packets incident on its inputs, then we call such a quantum crosspoint a self-routing crosspoint.

A self-routing QSC(n,m) is a sparse crossbar built using self-routing quantum crosspoints that

can realize all maps of the kind given in Eqn. (18).
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′
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|r2〉|0〉
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|0〉 c
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′

1

d
′

2
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′

1
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′
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r
′
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′
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Fig. 4: Circuit for the quantum crosspoint.

Inputs Outputs

r2 r1 r′2 r′1 d′2 d′1 State

0 0 0 0 d2 d1 Through

0 1 0 1 d2 d1 Through

1 0 0 1 d1 d2 Cross

1 1 1 1 d1 d2 Cross

Fig. 5: Input-output map for a quantum crosspoint.

5.1 Self-Routing Quantum Crosspoints

The crosspoints in the classical sparse crossbar are replaced by quantum crosspoints for which

the circuit and corresponding schematic representation is given in Figure 4. Here the upper

input with packet |r1, d1〉 corresponds to the input line incident on a crosspoint from the top

and the lower input with packet |r2, d2〉 corresponds to the input line coming in from the left.

The data bit strings d1, d2 and the routing bits r1, r2 are shown separately for clarity. The thick

lines indicate that d1 and d2 are bit strings with multiple bits. Each crosspoint uses an auxiliary

control qubit initialized to state |0〉, which is then set according to the map in Figure 5 and used

to control the setting (“through” or “cross”) of the switch gate. When the control qubit is set

to state |1〉, the input packets get swapped and when the control qubit is in state |0〉, the input

packets go through unchanged. In the crosspoint circuit the CNOT gate functions as a copier

which sets the state of the control qubit to |r2〉. This qubit is then used to control the two swap

gates which switch r1, r2 and d1, d2 respectively. So, the input-output mapping performed by

the quantum crosspoint can be represented as:

|r1, d1, 0, d2〉 |0〉
Crosspoint−−−−−−−→
Through

|r1, d1, 0, d2〉 |0〉

|r1, d1, 1, d2〉 |0〉
Crosspoint−−−−−−−→

Cross
|1, d2, r1, d1〉 |1〉 (19)

We can see that the auxiliary control qubit is always set to state |r2〉, i.e., the packets are swapped

when the routing qubit of the packet coming in from the left (r2) is in state |1〉 and go through

unchanged when this qubit is in state |0〉. In the schematic representation for the quantum

crosspoint in Figure 4, the filled circle or dot in the second box signifies that the routing qubit

of the packet coming in from the left is used to set the control qubit. Although the switch

control is determined fully by just r2, we cannot use its corresponding qubit by itself (without

the auxiliary control qubit) to set the switch. This is because the qubit for r2 is a part of the

packet incident on the lower input and itself needs to be switched along with that packet, so

although this qubit can act as a control qubit for all the rest of the qubits in the packet, it cannot
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Fig. 6: Self-routing fat-slim QSC(5,3): (a) Crossbar structure (b) Example for self-routing: Inputs

1, 4 and 5 are concentrated.

be a control qubit for switching itself. Also, we are not using r1 in the switch to determine the

routing state, but this bit is still relevant as eventually at the output of the concentrator valid

packets are identified by examining the routing bit values. Another reason to consider r1 is the

fact that crosspoint switches are interconnected to form the crossbar, and the packet from the

upper input at one crosspoint switch may be incident at the lower input of a switch in later

stages. In this scenario the qubit corresponding to r1 would be the auxiliary control for this

later stage switch. As the state of the quantum crosspoint is determined fully by just using the

information about the routing bits from the two input packets, the paths in the sparse crossbar

are determined in a self-routing fashion.

5.2 The Self-Routing Scheme

Starting with input 1, the routing of packets proceeds from top to bottom in a column for an

input and then to next higher numbered input in the next column. The control qubit is not

restored to its original state immediately and we give a method to restore the control qubit at

the output of the concentrator in Section 8.

Unlike in the classical case, all n inputs (plus the m additional inputs on the left) have

quantum bit strings incident on them. We distinguish the subset of inputs having packets for

concentration by setting the routing qubits in the headers of packets at these inputs to 1. A

self-routing quantum concentrator derived from a variant of the classical fat-slim (5, 3)-sparse

crossbar concentrator is shown in Figure 6. The square boxes in Figure 6(a) indicated by letters

A–I are quantum crosspoints. In this concentrator, valid packets (packets with routing bit 1)

come only on inputs 1–5, and if the input pattern is capacity achieving, they exit only on

outputs 1–3. These inputs and outputs are indicated by arrows in the figure. In the process of

self-routing, the crosspoints are traversed from top to bottom in a column and from left to right

in a row.
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The crossbar in Figure 6(a) is redrawn in Figure 6(b) using the schematic representation of

quantum crosspoints shown in Figure 4. We have not shown the auxiliary control qubits to

maintain clarity. The circuit in Figure 6(b) is obtained by putting all crosspoints in the through

state, i.e., input line at a crosspoint coming in from the top is “bent” and connected to output

going out to the right and input line coming in from the left is “bent” and connected to the

output going out to the bottom, and following the sequence of crosspoints encountered from a

crossbar input to a crossbar output. For example, with all crosspoints in through state the path

from input 2 goes through crosspoints B and F and comes out at output 7. At crosspoint B input

2 and input 8 interact, with input 8 coming in from the left, hence in Figure 6(b) crosspoint

B connects input 2 and input 8 with the box with the filled circle or dot connected to input

8. Similarly at crosspoint F, the left input lies on the path from input 2 while the top input

lies on the path from input 3 (via crosspoints C and E). Hence crosspoint F connects lines for

inputs 2 and 3 with the dotted box connected to the line for input 2. The assignments of dotted

boxes between the inputs of the quantum crosspoints in Figure 6(b) are designed to facilitate

the self-routing algorithm as illustrated by an example below:

Consider an input concentration pattern with valid packets at inputs 1, 4 and 5 for the crossbar

shown in Figure 6(b), i.e., only packets appearing at inputs 1, 4 and 5 have routing bits set to 1

(indicated by arrows). At all the other inputs, the incident packets have routing bits set to 0. At

crosspoint A the upper input, i.e., input 1 has a valid packet and the lower input has a packet

with routing bit set to 0. Thus, this situation corresponds to the r1 = 1, r2 = 0 case in Figure 5

and A is set to pass the packets through unchanged. Proceeding to the next stage, we see that

at crosspoint D, the routing bit of the packets at both the lower and upper inputs is 1, hence D

swaps its input packets onto its outputs. Continuing in this way we see that the packet from

input 1 takes the path A→D→G to output 1. Similarly the packets from input 4 and input 5

take the paths D→E→H and G→H→I to outputs 2 and 3 respectively. We note that it is not

required that all qubits travel through the same number of quantum gates in a quantum circuit

as it also happens in this quantum circuit implementation of a fat-and-slim crossbar.

The intuition behind the routing scheme is as follows: In the circuit shown in Figure 6(b)

routing priority is given to the packet incident on the crosspoint input connected to the “dotted”

box of a quantum crosspoint, this is equivalent to routing according to the packet coming in

from the left in the crossbar. If the routing bit of the packet from the left is 1 then switch is set

in a cross state, and this is equivalent to passing a valid packet coming in from the left to the
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right irrespective of the packet incident from the top. Thus, once a valid packet is routed from

the top to the right, it goes through unimpeded to the end of the row. In other words, once

an input is matched to an output this decision remains unchanged for the subsequent steps of

the routing process. The crosspoint is set in a through state when the packet at the input to

the “dotted” box has its routing bit equal to 0, and this corresponds to a turn from left to the

bottom in the crossbar. This observation combined with the previous argument means that, in

a column of the crossbar, a packet gets passed from top to bottom from one row to the next

until it encounters a crosspoint where the packet from the left has a routing bit set to 0.

This self-routing scheme can be used for any sparse crossbar structure, it is not limited to

concentrators. An interesting question to ask is whether all known optimal sparse crossbar

concentrator structures allow concentration when a self-routing scheme of the form described

above is used to route packets. In the subsequent sections we prove that while this is not true

for all optimal sparse crossbar concentrators, it holds for fat-slim and banded crossbars.

6 SELF-ROUTING ON QUANTUM SPARSE CROSSBAR CONCENTRATORS

We prove that the self-routing scheme described in Section 5.1 concentrates packets up to the

output capacity of the concentrator, for two families of sparse crossbar structures, namely the fat-

slim and banded crossbars. All the proofs are given for a quantum input assignment consisting

of a single concentration pattern. This is sufficient as the linearity of quantum systems implies

that, for any general input quantum concentration assignment, these results apply to every

concentration pattern contained in its superposition and hence to the entire input assignment.

We first introduce some notation that will be used throughout the rest of the paper. For a

quantum (n,m)-sparse crossbar (n ≥ m) in which packets are routed using our self-routing

scheme, we use the following notation:

1) The set of inputs is denoted by I = {1, 2, . . . , n} and the output set by O = {1, 2, . . . ,m}

where 1 ≤ m ≤ n.

2) The n×m adjacency matrix, A, is given by:

A = {aij} =






0, no crosspoint between input i and output j,

1, crosspoint between input i and output j.

3) Ai = {j : for all aij = 1, 1 ≤ i ≤ n}, is the neighbor set for input i, i.e., the set of outputs

which can be connected to input i.
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Input xi

Output yi

Z

Axi

Fig. 7: Output matching yi for input xi.

4) X r
1 = {x1, x2, . . . , xr} is an ordered set of r distinct inputs, i.e., xi ∈ I, 1 ≤ i ≤ r, and

x1 < x2 < · · · < xr for all r = 1, . . . ,m.

5) Yr
1 = {y1, y2, . . . , yr} is the set of outputs to which the inputs in X r

1 are matched using self

routing with output yi being matched to input xi, where, yi ∈ Axi , i = 1, . . . , r. If input xi

can not be matched to any output then yi = ∅, the empty set.

6) We denote subsets of Yr
1 as follows: Y0 = ∅, the empty set, Y1 = {y1}, Yb

1 = {y1, y2, . . . , yb},

and Yb
a = {ya, ya+1, . . . , yb}, ∀ a ≤ b ≤ r.

We now show that using the self-routing scheme described above in Section 5.2, certain

families of sparse crossbar concentrators, namely fat-slim and banded crossbar concentrators

can correctly route any capacity achieving input pattern.

Lemma 1. Let Z ⊆ O be the subset of outputs to which packets have already been matched, using

self-routing, before routing begins on input xi, 1 ≤ i ≤ r. Then, the output yi, to which input xi is

matched is given by yi = minz {z ∈ Axi ∩ Z ′}, where Z ′ = O \ Z is the complement of the set Z .

Proof: All outputs which have been concentrated to (matched) before routing the packet on

input xi, (i.e., in Z) correspond to rows which have a packet with routing bit r = 1 coming

from the left on them. We know from the table for the auxiliary control qubit (Figure 5) that

all crosspoints in rows corresponding to set Z will be set to the “cross” state, see Figure 7.

This means that only a crosspoint from the set of rows corresponding to Z ′ will be set to the

“through” state. This in turn means yi ∈ Z ′. Also, obviously, yi ∈ Axi . Thus, yi ∈ Axi ∩Z ′. Since

the routing process proceeds from the top to bottom, i.e., in increasing order of row/output

number, the lowest numbered available output is matched. Hence, yi = minz{z ∈ Axi ∩ Z ′}.

Lemma 2. Let yi be the output to which input xi is matched, 1 ≤ i ≤ r. Then,

yi = minz {z ∈ Axi ∩ (Y i−1
1 )′}
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Proof: As the routing of packets at inputs is initiated in increasing order of input index from

left to right, the packets at inputs x1, . . . , xi−1 are routed before routing starts on input xi. Thus,

the set of outputs matched before routing starts on input xi is Y i−1
1 . Substituting Z = Y i−1

1 in

Lemma 1 we get the desired result.

Lemma 2 essentially asserts that, at any input, the first or lowest numbered unmatched output

is selected as a match for that input during self-routing. If an input xi cannot be matched to

any output in its neighbor set Axi , then yi = ∅.

Lemma 3. If i /= j and yi = minz {z ∈ Axi ∩ (Y i−1
1 )′} /= ∅ and yj = minz {z ∈ Axj ∩ (Yj−1

1 )′} /= ∅.

Then, yi /= yj , 1 ≤ i, j ≤ r ≤ m.

Proof: Without loss of generality, assume i < j, then yi ∈ {y1, . . . , yj−1} = Yj−1
1 . Also

yj = minz{z ∈ Axj ∩ (Yj−1
1 )′} implies that yj ∈ (Yj−1

1 )′. Hence, yi /= yj .

Theorem 2. An (n,m)-sparse crossbar network is a self-routing concentrator if

yi = minz {z ∈ Axi ∩ (Y i−1
1 )′} /= ∅

for all i = 1, . . . , r, and for every r-input ordered subset X r
1 = {x1, . . . , xr}, 1 ≤ r ≤ m.

Proof: Let Yr
1 = {y1, . . . , yr} where yi = minz {z ∈ Axi ∩ (Y i−1

1 )′} /= ∅ for all i = 1, . . . , r. By

Lemma 3 all elements of Yr
1 are distinct and form a matching for inputs in X r

1 . By Lemma 2, Yr
1

corresponds to the set of outputs chosen by self-routing packets on the (n,m)-sparse crossbar.

If such an output matching exists for every ordered r input subset, 1 ≤ r ≤ m then this implies

that any r inputs can be connected to r distinct outputs using self-routing. Hence, such an

(n,m)-sparse crossbar network is a self-routing concentrator.

A quantum concentrator derived by replacing classical crosspoints by quantum crosspoints

in a classical sparse crossbar concentrator is not always self-routable by the algorithm described

above. One such scenario is shown in Figure 8. For the sparse crossbar in this figure the union of

any k columns (or equivalently input neighbor sets) contains crosspoints in least k distinct rows

(or outputs) for all k = 1, . . . , 5, thus by Hall’s theorem it is a (9, 5)-concentrator. The set of inputs

with packets to be concentrated is given by X 5
1 = {1, 3, 5, 6, 7}. The output to which an input is

matched by following the self-routing scheme is indicated by the shaded crosspoints, therefore,

input 1 is matched to output 1, input 3 to output 2 and so on. The crossed out crosspoints

indicate the outputs to which an input is not matched during self-routing. The matched outputs

for the first four inputs in X 5
1 form the set Y4

1 = {1, 2, 3, 4}. Thus for input 7 (which is the fifth

input in X 5
1 ) we get y5 = minz {z ∈ A7 ∩ (Y4

1 )
′} = minz{z ∈ {1, 2, 3, 4} ∩ {5}} = ∅. Hence, this

concentrator can not self-route all input subsets using the algorithm we described. This example
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Fig. 8: Conflict in self-routing.

IF

Slim inputs Fat inputs

IS

Fig. 9: Partitions of fat-slim crossbar.

shows that not all sparse-crossbar concentrators are self-routable using our algorithm.

We now show that fat-slim and banded sparse crossbar concentrators can self-route by show-

ing that for these concentrators Theorem 2 is always satisfied. As part of the proofs we give

explicit expressions for the input-output mapping realized for concentration on these structures.

Self-Routing Fat-Slim QSC(n,m)

Definition 4 (Fat-Slim Crossbar). An (n,m)-sparse crossbar network is called fat-slim if we can

partition the input set I into two subsets: IS (slim inputs) and IF (fat inputs) as shown in

Figure 9 with neighbor sets for input i described as follows:

i ∈ IS ⇔ 1 ≤ i ≤ m; Ai = π(i) (20a)

i ∈ IF ⇔ m < i ≤ n; Ai = {1, . . . ,m} = O (20b)

where π is a permutation on the elements of the set {1, . . . ,m}.

Every fat-slim (n,m)-sparse crossbar is an optimal (n,m)-concentrator with m(n − m + 1)

crosspoints [24]. We now show that any capacity achieving input pattern can be self-routed on

a fat-slim sparse crossbar concentrator.

Theorem 3. For the fat-slim QSC(n,m) let X = {x1, x2, . . . , xr} be any ordered r-input subset where

x1 < x2 < · · · < xr, ∀ r, 1 ≤ r ≤ m. Then, there exists an output matching, Y = {y1, y2, . . . , yr} for

X obtained as result of self-routing the fat-slim QSC(n,m) and it is given by

yi =






π(xi), xi ∈ IS ,

bi−(m−a), xi ∈ IF .

where B = {b1, . . . , ba} = ({π(xi) ∈ IS})′ such that b1 < b2 < · · · < ba, a = |B|, i = 1, 2, . . . , r.

Proof: The proof is inductive in nature and given in Appendix A.

Page 55 of 72

http://mc.manuscriptcentral.com/tc-cs

Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

21

IU IT IL

(a) Partitions of banded crossbar, n =

9,m = 5, (n ≥ 2m− 1).

ILIU IT

(b) Partitions of banded crossbar,

n = 6,m = 5, (m ≤ n < 2m− 1).

Fig. 10: Partitions of banded sparse crossbar concentrator.

Self-Routing Banded QSC(n,m)

We now show that for banded sparse crossbar concentrators our self-routing scheme can find

an r-output matching for any r input subset (r ≤ m).

Definition 5 (Banded Crossbar). An (n,m)-sparse crossbar is called banded if the set of inputs,

I, can be partitioned into three sets IU , IT and IL as shown in Figure 10 with the corresponding

neighbor sets for the inputs as follows:

If n ≥ 2m− 1 then:

i ∈ IU ⇔ 1 ≤ i ≤ m− 1; Ai = {1, 2, . . . , i} (21a)

i ∈ IT ⇔ m ≤ i ≤ n−m+ 1; Ai = {1, 2, . . . ,m} = O (21b)

i ∈ IL ⇔ n−m+ 2 ≤ i ≤ n; Ai = {i− n+m, . . . ,m} (21c)

If m ≤ n < 2m− 1 then:

i ∈ IU ⇔ 1 ≤ i ≤ n−m+ 1; Ai = {1, 2, . . . i} (22a)

i ∈ IT ⇔ n−m+ 2 ≤ i ≤ m− 1; Ai = {i− n+m, . . . , i} (22b)

i ∈ IL ⇔ m ≤ i ≤ n; Ai = {i− n+m, . . . ,m} (22c)

Note that for n = 2m − 2, n −m + 2 = m > m − 1. Hence in this case, from Eqn. (22b), IT
does not exist, but this does not affect the proof below. Also, Eqns. (21a)-(22c) can be written

more succinctly as:

Ai = {max(1, i− n+m), . . . ,min(i, m)}, i = 1, . . . , n (23)

Every banded (n,m)-sparse crossbar is an optimal (n,m)-concentrator with m(n−m+1) cross-

points [25].
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Fig. 11: Self-Routing on fat-slim QSC(5,3).

Theorem 4. For the banded QSC(n,m) let X = {x1, x2, . . . , xr} be any ordered r-input subset where

x1 < x2 < · · · < xr, ∀ r, 1 ≤ r ≤ m. Then, there exists an output matching, Y = {y1, y2, . . . , yr} for

X obtained as result of self-routing the banded QSC(n,m) and it is given by

yi = max(i, xi − n+m) i = 1, 2, . . . , r.

Proof: The proof follows an inductive approach similar to that used for Theorem 3 and is

given in Appendix B.

7 AN EXAMPLE

We give an example to illustrate self-routing on a fat-slim QSC(5, 3). This concentrator is shown

in Figure 11. The quantum packets present at inputs 1, 3 and 4 are |Q1〉 = 1√
2
(|1, d11〉+ |1, d12〉),

|Q3〉 = |1, d3〉 and |Q4〉 =
√
3
2 |1, d41〉 + 1

2 |1, d42〉 respectively. Inputs 2 and 5 do not have any

packets. Inputs 6, 7 and 8 correspond to the three dummy inputs on the left hand side from top

to bottom. Thus, in this case, the input quantum concentration assignment is given by

|Q1〉 ⊗ |0, d2〉 ⊗ |Q3〉 ⊗ |Q4〉 ⊗ |0, d5〉
8⊗

i=6

|0, di〉

=

(
1√
2
|1, d11〉+

1√
2
|1, d12〉

)
⊗ |0, d2〉 ⊗ |1, d3〉 ⊗

(√
3

2
|1, d41〉+

1

2
|1, d42〉

)

⊗ |0, d5〉 ⊗ |0, d6〉 ⊗ |0, d7〉 ⊗ |0, d8〉

=

√
3

2
√
2
|(1, d11), (0, d2), (1, d3), (1, d41), (0, d5), (0, d6), (0, d7), (0, d8)〉

+
1

2
√
2
|(1, d11), (0, d2), (1, d3), (1, d42), (0, d5), (0, d6), (0, d7), (0, d8)〉

+

√
3

2
√
2
|(1, d12), (0, d2), (1, d3), (1, d41), (0, d5), (0, d6), (0, d7), (0, d8)〉

+
1

2
√
2
|(1, d12), (0, d2), (1, d3), (1, d42), (0, d5), (0, d6), (0, d7), (0, d8)〉 (24)
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Thus, the input is a superposition of four concentration patterns with co-efficients
√
3/

√
8,

1/
√
8,
√
3/

√
8 and 1/

√
8 respectively, shown by grey horizontal bars. Since all four patterns

are capacity achieving, the quantum assignment is also capacity achieving. The state of the

crosspoints is also shown. The shaded crosspoints route the valid packets on inputs 1, 3 and

4. Measurement at the output will result in one out of the four patterns shown at the output

being observed with probabilities 3/8, 1/8, 3/8 and 1/8 respectively. Therefore, data packets d11

and d12 are observed on output 1 with probability 1/2. Data packet d3 is observed on output

2 with probability 1 and data packets d41 and d42 are observed with probability 3/4 and 1/4

respectively on output 3. This output state can be explicitly written as:
√
3

2
√
2
|(1, d11), (1, d3), (1, d41), (0, d6), (0, d8), (0, d7), (0, d2), (0, d5)〉

+
1

2
√
2
|(1, d11), (1, d3), (1, d42), (0, d6), (0, d8), (0, d7), (0, d2), (0, d5)〉

+

√
3

2
√
2
|(1, d12), (1, d3), (1, d41), (0, d6), (0, d8), (0, d7), (0, d2), (0, d5)〉

+
1

2
√
2
|(1, d12), (1, d3), (1, d42), (0, d6), (0, d8), (0, d7), (0, d2), (0, d5)〉 (25)

The packets in the concentration patterns are written in increasing order of outputs, with outputs

1–3 on the right and outputs 4–8 located on the bottom. The dashed arrow shows the order

in which the crosspoints are traversed during routing, and the crosspoints in one stage are

indicated by the dotted diagonals. The initial state of the auxiliary qubits (control qubits) is

|000000000〉 which is a string of nine zeros, each corresponding to one crosspoint in the crossbar.

Recall that control qubits are set to 1 for the cross state and to 0 for the through state. The output

state of the auxiliary qubits is indicated beside the crosspoints. Thus, the output state of the

auxiliary qubits is |000110111〉 where the bits are written in order from top to bottom and left to

right, e.g., the third crosspoint for input 4 is set to a through state and this is the sixth crosspoint

in traversal order, so the sixth bit in the output state is 0.

Output for Capacity Exceeding Input Patterns

So far we have shown that in a fat-slim or banded QSC(n,m), self-routing can be used to

concentrate any capacity achieving input assignment pattern. We now present the case when

the input pattern exceeds the capacity of the crossbar.

For a self-routing QSC(n,m), consider a capacity exceeding input concentration pattern with r,

(r > m) valid packets. The ordered set of inputs with packets to concentrate is X = Xm
1 ∪X r

m+1

where Xm
1 = {x1, . . . , xm} and X r

m+1 = {xm+1, . . . , xr}. Since inputs are routed in increasing
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Fig. 13: A Banded QSC(5,3) with additions

for restoring the control quantum bits.

order, all inputs in Xm
1 are concentrated to the m outputs, i.e., Y = {y1, . . . , ym} = O. For input

xm+1: ym+1 = minz{z ∈ Axm+1 ∩ (Y)′} = minz{z ∈ Axm+1 ∩ ∅} = ∅. Similarly for the other inputs

in X r
m+1, the matching output is ∅, i.e., {ym+1, . . . , yr} = ∅. If yi = ∅, then all crosspoints in the

column for the corresponding input xi are set to cross state and the packet comes out on the

bottom, which is at output xi+m. Hence, the m lowest numbered inputs are concentrated and

the rest are connected to corresponding output at the bottom.

8 RESTORING AUXILIARY CONTROL QUANTUM BITS

Quantum information can be encoded in many different ways, such as the spin component of

basic particles like electrons or protons, or in the polarization of photons. But, such particles

can interact with the environment which leads to a corruption of their quantum state, a process

known as decoherence. Decoherence can be viewed as a measurement of a superposed quantum

state which collapses it to one of its basis states. This leads to a loss of information, but for a

quantum circuit, this information loss can be overcome if the ancillary qubits used as control

qubits are restored back to their original states, so that a corruption of their state does not affect

the observed quantum data. We now give a method to restore the state of the auxiliary bits

back to their original state, i.e., |0〉. For a single quantum crosspoint we can restore the control

quantum bit back to the state |0〉 as shown in Figure 12. The mapping performed is:

|(r1, d1), (0, d2)〉 |0〉c |00〉ab
Crosspoint−−−−−−−→
Through

|(r1, d1), (0, d2)〉 |0〉c |00〉ab (26)

Copy−−−→ |(r1, d1), (0, d2)〉 |0〉c |r10〉ab (27)

Inverse−−−−−→ |(r1, d1), (0, d2)〉 |0〉c |r10〉ab (28)

|(r1, d1), (1, d2)〉 |0〉c |00〉ab
Crosspoint−−−−−−−→

Cross
|(1, d2), (r1, d1)〉 |1〉c |00〉ab (29)

Copy−−−→ |(1, d2), (r1, d1)〉 |1〉c |1 r1〉ab (30)

Inverse−−−−−→ |(r1, d2), (1, d1)〉 |0〉c |1 r1〉ab (31)
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At the output of the quantum crosspoint the two CNOT gates in the copy circuit copy the

values of bits r1 and r2 onto a and b respectively. This can be seen in Eqn. (27) and Eqn. (30).

The inverse switch then does a controlled swap of the two routing bits r1 and r2 before restoring

c back to its original state as can be seen in Eqn. (28) and Eqn. (31). Note that when the bit c

is 0 at the output of the quantum crosspoint switch then the restoring portion does not modify

anything (see Eqns. (26)-(28)) as the corresponding auxiliary qubit is already in the state |0〉.

On measurement at the output we determine valid (not valid) packets by observing their

associated routing bit as 1 (0). But note that on final measurement in Figure 12 the routing bits

may not correspond to the data part of their packets, this is seen in Eqn. (31) where r1, d2 and

1, d1 are together instead of being 1, d2 and r1, d1. But the copying operation ensures that we

have a copy of the correct routing bits and can use these to distinguish the valid packets, for

example, in Eqn. (31) the correct values of the routing bits at the output are 1 for the upper

packet and r1 for the lower packet and these are present in the correct order, 1, r1, on qubits

a and b. Thus we can now consider a as the routing qubit for the packet at the upper output

and b as the routing qubit for the packet at the lower output.

This circuit restores the control qubit for a single crosspoint. For the entire self-routing QSC

we need a mirror image of the sparse crossbar concentrator concatenated with the QSC after

the copying of the routing bits is done at the output to restore the control qubits. This is shown

in Figure 13. Only the routing qubits are involved in restoring the state of the control qubits,

hence only these qubits are forwarded to the next stage after the QSC and are shown by dashed

lines. The dotted lines show the order of traversal of crosspoints and inverse switches.

9 COST ANALYSIS

We have introduced quantum concentrators and presented two designs of such concentrators

using self-routing sparse crossbars. The complexity of these quantum concentrators can be

computed as follows:

We need, per crosspoint, one multi-qubit switch gate for swapping the nd+1 bit packets and

one CNOT gate for setting the auxiliary control bit. A switch gate for swapping one quantum

bit packets can be implemented using two CNOT gates and one CCNOT gate. Hence, we need

2(nd + 1) CNOT and nd + 1 CCNOT gates for the multi-qubit switch gate for a total of 2nd + 3

CNOT and nd + 1 CCNOT gates per crosspoint. Therefore, each quantum concentrator design

we presented uses m(n−m+1)(2nd +3) CNOT gates, m(n−m+1)(nd +1) CCNOT gates and

m(n−m+ 1) auxiliary quantum bits.
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For the restoring stage, there are m(n − m + 1) inverse switches and n + m copy nodes.

Each inverse switch has one switch gate for single qubits and one CNOT gate, which sums

up to three CNOT and one CCNOT gate. Each copy node has two CNOT gates and two extra

qubits. Thus the total cost for restoring the control qubits is 3m(n −m + 1) + 2(n +m) CNOT

gates, m(n −m + 1) CCNOT gates and 2(m + n) extra qubits. Therefore, the overall cost for a

QSC(n,m) is m(n−m+1)(2nd+6)+2(n+m) CNOT gates, m(n−m+1)(nd+2) CCNOT gates

and m(n−m+ 1) + 2(n+m) auxiliary quantum bits.

The depth of a QSC(n,m) is given by the maximum possible number of crosspoints between

an input and an output. It is easy to see that the longest input-output path is between input 1

and output m. For the fat-slim QSC(n,m), this path length is (n−m+1)+m−1 = n crosspoints

and for the banded QSC(n,m) the path length is (n−m+ 1) + (m− 1) + (m− 1) = n+m− 1

crosspoints. Hence the depth of fat-slim QSC(n,m) is n and the depth of banded QSC(n,m) is

n+m−1. The time required to self-route is upper bounded by the depth of the concentrator, thus,

self-routing on a fat-slim QSC(n,m) has O(n) delay and self-routing on a banded QSC(n,m)

has O(n+m) delay.

10 CONCLUDING REMARKS

Our results demonstrate that quantum principles can be applied to concentration problems in

packet switching. In proving that fat-slim and banded crossbar concentrators are self-routable,

we have assumed input quantum assignments consisting of single patterns of classical packets.

This proves that classical fat-slim and banded crossbar concentrators are self-routable as well.

We also note that in our self-routing algorithm, when the capacity of m packets is exceeded,

only the m lowest numbered inputs have their packets concentrated. This introduces the is-

sue of fairness in routing. If the capacity is exceeded, one way to ensure all inputs have an

equal probability for concentration is to create an equal superposition of the input packets

at the outputs of a crosspoint whenever both incoming packets have their routing bits equal

to 1. The resulting output quantum concentration assignment would then contain superposed

concentration patterns in which valid packets from inputs other than the lowest m are present.

Another direction to be explored further is the tradeoff between delay and fanout. We see

that the delay varies with topology, as the more “balanced” banded crossbar having a larger

delay of O(n+m) than the O(n) delay for the fat-slim crossbar. This seems to be a consequence

of the sequential nature of the routing algorithm. The dependence of delay on routing strategy

and topology is thus another direction for further research.
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We have established the self-routability of two families of sparse crossbar concentrators,

namely the fat-slim and banded crossbars. Finding other topologies which allow self-routing

remains an open question. The density of (n,m)-sparse crossbar concentrators among all n×m

crossbars is known [30] as are equivalence relations between different classical sparse crossbar

concentrator topologies [25]. A similar approach could be employed to characterize self-routable

crossbar concentrators and find structures which belong to this class. In our algorithm, inputs

were routed in increasing order of their indicies. By changing the order in which this routing

is done, we could find other structures which allow self-routing. A trivial example would be to

route in decreasing order of inputs on a fat-slim crossbar with inputs 1 to (n−m) comprising

the fat section and inputs (n−m+1) to n the slim section. In particular, an interesting direction

for further investigation would be to determine if there exist self-routing regular sparse crossbar

concentrators, i.e., those with fixed out-degree inputs and in-degree outputs. All these questions

apply to both classical and quantum sparse crossbar concentrators.

Acknowledgements. We thank the referees for their significant suggestions that helped im-

proved the presentation of the paper.

APPENDIX A

PROOF FOR THEOREM 3

Proof: In the ordered r-input set X , let the first k (k ≤ r) inputs belong to the slim section

and the rest to the fat section.

If x1 ∈ IS , we get

y1 = min
z

{z ∈ Ax1 ∩ Y ′
0} (from Lemma 2)

= min
z

{z ∈ Ax1 ∩O} (as Y0 = ∅)

= min
z

{z ∈ Ax1} = π(x1) (from Eqn. (20a)) (32)

Hence, y1 /= ∅ and Y1 = {π(x1)} is the set of matched outputs after routing on the first input.

Similarly for x2 ∈ IS we get

y2 = min
z

{z ∈ Ax2 ∩ (Y1)
′} (from Lemma 2)

= min
z

{z ∈ {π(x2)} ∩ {π(x1)}′} (from Eqn. (20a))

= min
z

{z ∈ {π(x2)}} = π(x2) (as π(x1) /= π(x2))

Continuing this way we get Yk
1 = {π(x1),π(x2), . . . ,π(xk)}. (33)
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Now since X is an ordered set of distinct inputs, all the elements of Yk
1 are distinct and hence

form a matching for the k slim inputs. If k = r then the proof is complete, else for xk+1 ∈ IF
we get

yk+1 = min
z

{z ∈ Axk+1 ∩ (Yk
1 )

′} (from Lemma 2)

= min
z

{z ∈ O ∩ {π(x1), . . . ,π(xk)}′} (from Eqns. (20b) and (33))

= min
z

{z ∈ {π(x1), . . . ,π(xk)}′} (34)

Note |{π(x1), . . . ,π(xk)}′| = m − k. Let B = {b1, . . . , bm−k} where bi ∈ (Yk
1 )

′, i = 1, . . . ,m −

k, such that b1 < b2 < · · · < bm−k. Thus, B is an ordered version of (Yk
1 )

′ = {π(x1), . . . ,π(xk)}′

with elements arranged in increasing order of magnitude, |B| = m− k. From Eqn. (34), yk+1 =

minz{z ∈ B} = b1.

Also, k ≤ r ≤ m and if k = r = m, i.e., all the slim inputs are concentrated then yk+1 = ∅ and

Yk
1 is the matching corresponding to the concentration. If k < r then clearly yk+1 = b1 /= ∅ as

then B /= ∅. Thus Yk+1
1 = Yk

1 ∪ {b1} = {π(x1), . . . ,π(xk), b1}.

For input yk+2 ∈ IF we get yk+2 = min
z

{z ∈ Axk+2 ∩ (Yk+1
1 )′}

= min
z

{z ∈ O ∩ (Yk
1 ∪ {b1})′}

= min
z

{z ∈ (Yk
1 )

′ ∩ {b1}′}

= min
z

{z ∈ B ∩ {b1}′} = b2

Continuing in the same fashion we get Yr
k+1 = {b1, . . . , br−k}. Now, |B| = m−k, i.e., k = m− |B|.

Thus, yk+i = bi = b(k+i)−k = bk+i−(m−|B|), i = 1, . . . , r − k. Hence, yi = bi−(m−a), i = k + 1, . . . , r,

a = |B|. Therefore, by Theorem 2 the fat-slim QSC(n,m) is self routing.

APPENDIX B

PROOF FOR THEOREM 4

Proof: In X let k1 inputs belong to IU , k2 inputs belong to IT and the rest r−(k1+k2) inputs

belong to IL, i.e., {x1, . . . , xk1
} ⊆ IU , {xk1+1, . . . , xk1+k2

} ⊆ IT and {xk1+k2+1, . . . , xr} ⊆I L.

Case I: n ≥ 2m− 1

For input x1 ∈ IU :

y1 = min
z

{z ∈ Ax1 ∩ Y ′
0} (from Lemma 2)

= min
z

{z ∈ Ax1 ∩O} (as Y0 = ∅)

= min
z

{z ∈ {1, 2, . . . , x1}} = 1 (from Eqn. (21a))
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Similarly for x2 ∈ IU

y2 = min
z

{z ∈ Ax2 ∩ (Y1)
′}

= min
z

{z ∈ {1, . . . , x2} ∩ {1}′}

= min
z

{z ∈ {2, . . . , x2}} = 2

Proceeding this way for all inputs in IU we get Yk1

1 = {1, 2, . . . , k1}.

For input xk1+1 ∈ IT :

yk1+1 = min
z

{z ∈ Axk1+1 ∩ (Yk1

1 )′} (from Lemma 2)

= min
z

{z ∈ {1, . . . ,m} ∩ {1, . . . , k1}′} (from Eqn. (21b))

= min
z

{z ∈ {k1 + 1, . . . ,m}} = k1 + 1

We can get similar results for all other inputs in IT . Thus, Yk1+k2

1 = {1, . . . , k1 + k2}.

Also when 1 ≤ i ≤ k1 + k2, xi ∈ IU ∪ IT

⇒ xi ≤ n−m+ 1 (from Eqns. (21a) and (21b))

⇒ xi − n+m ≤ 1

⇒ xi − n+m ≤ i = yi

Hence, yi = i = max(i, xi − n+m), for all 1 ≤ i ≤ k1 + k2.

For input xk1+k2+1 ∈ IL:

yk1+k2+1 = min
z

{z ∈ Axk1+k2+1 ∩ (Yk1+k2

1 )′}

= min
z

{z ∈ {xk1+k2+1 − n+m, . . . ,m} ∩ {k1 + k2 + 1, . . . ,m}} (35)

= min
z

{z ∈ {max(xk1+k2+1 − n+m, k1 + k2 + 1), . . . ,m}} (36)

= max(k1 + k2 + 1, xk1+k2+1 − n+m) (37)

where Eqn. (35) follows from Eqn. (21c) and Eqn. (36) follows from the fact that we are taking

the intersection of 2 sets both of which cover continuous intervals of outputs up to output m.

We now use induction to prove the rest of the theorem.

Induction assumption:

yi = max(i, xi − n+m), for all i = k1 + k2 + 1, . . . , j − 1 where j ≤ r. (38)

Need to prove: yj = max(j, xj − n+m)
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Proof for Induction: We have already proved the base case for i = k1 + k2 +1. We will first show

that, for yi’s chosen according to Eqn. (38), yi−1 < yi.

Note yi−1 = max(i− 1, xi−1 − n+m) and yi = max(i, xi − n+m), thus we get the following

cases:

1) yi−1 = i− 1: We get the followings series of inequalities:

max(i, xi − n+m) ≥ i

⇒ yi ≥ i (as yi = max(i, xi − n+m))

> i− 1 = yi−1

2) yi−1 = xi−1 − n+m: We get the followings series of inequalities:

max(xi − n+m, i) ≥ xi − n+m

⇒ yi ≥ xi − n+m (as yi = max(i, xi − n+m))

> xi−1 − n+m = yi−1 (as xi > xi−1)

Thus yi > yi−1, i = k1 + k2 + 2, . . . , j − 1.

We know that Yk1+k2

1 = {1, . . . , k1+k2} is monotonically increasing, Yj−1
k1+k2+1 is monotonically

increasing and yk1+k2+1 = max(k1 + k2 + 1, xk1+k2+1 − n+m)) > k1 + k2 = yk1+k2
.

Thus Yj−1
1 = Yk1+k2

1 ∪ Yj−1
k1+k2+1 is monotonically increasing, i.e., y1 < y2 < · · · < yj−1.

By Lemma 2, yj = min
z

{z ∈ Axj ∩ (Yj−1
1 )′} (39)

By induction assumption yj−1 = max(j − 1, xj−1 − n+m).

Case 1: yj−1 = xj−1 − n+m

By monotonicity of Yj−1
1 we get maxz(z ∈ Yj−1

1 ) = yj−1 = xj−1 − n+m. Thus

(Yj−1
1 )′ = Z ∪ {xj−1 − n+m+ 1, . . . ,m}

where Z ⊆ {k1 + k2 + 1, . . . , xj−1 − n+m− 1}

Therefore,

Axj ∩ (Yj−1
1 )′ = {xj − n+m, . . . ,m} ∩ [Z ∪ {xj−1 − n+m+ 1, . . . ,m}]

= ∅ ∪ {xj − n+m, . . . ,m} ∩ {xj−1 − n+m+ 1, . . . ,m}

= {(max(xj − n+m, xj−1 − n+m+ 1)), . . . ,m}

= {xj − n+m, . . . ,m} (as xj ≥ xj−1 + 1) (40)
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Substituting in Eqn. (39) we get

yj = min
z

{z ∈ {xj − n+m, . . . ,m}} = xj − n+m (41)

Now yj−1 = max(xj−1 − n+m, j − 1) = xj−1 − n+m. Thus

xj−1 − n+m ≥ j − 1

⇒ xj−1 − n+m+ 1 ≥ j

⇒ xj − n+m ≥ j (as xj ≥ xj−1 + 1) (42)

From Eqns. (41) and (42)

yj = max(xj − n+m, j) (43)

Case 2: yj−1 = j − 1

Yj−1
1 is monotonically increasing, i.e., y1 < y2 < · · · < yj−1 and yj−1 = j − 1

⇒ Yj−1
1 = {1, 2, . . . , j − 1}

⇒ (Yj−1
1 )′ = {j, . . . ,m}

Substituting in Eqn. (39) we get

yj = min
z

{{xj − n+m, . . . ,m} ∩ {j, . . . ,m}}

= min
z

{max(xj − n+m, j), . . . ,m}

= max(xj − n+m, j) (44)

From Eqn. (43) and Eqn. (44) yj = max(xj − n+m, j) and proof for the induction is complete.

Case II: m ≤ n < 2m− 1

k1 inputs in S belong to IU , i.e., {x1, . . . , xk1
} ⊆ IU . For y1, . . . , yk1

the proof is exactly the same

as for the case n ≥ 2m−1 and we get Yk1

1 = {1, 2, . . . , k1} and hence, yi = i = max(i, xi−n+m),

i = 1, . . . , k1.

The next k2 inputs in X belong to IT , i.e., {xk1+1, . . . , xk1+k2
} ⊆ IT .

For yk1+1 we get

yk1+1 = min
z

{z ∈ Axk1+1 ∩ (Yk1

1 )′} (from Lemma 2)

= min
z

{z ∈ {xk1+1 − n+m, . . . , xk1+1} ∩ {1, . . . , k1}′} (from Eqn. (22b))

= min
z

{z ∈ {xk1+1 − n+m, . . . , xk1+1} ∩ {k1 + 1, . . . ,m}}
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Both sets in the intersection contain a continuous series of outputs. Now obviously, xk1+1 ≤ m.

Also, k1 + 1 ≤ xk1+1 as
k1 ≤ n−m+ 1 (from Eqn. (22a))

⇒ k1 + 1 ≤ n−m+ 2

≤ xk1+1 (from Eqn. (22b))

Thus, yk1+1 = min
z

{z ∈ {max(k1 + 1, xk1+1 − n+m), . . . , xk1+1}}

= max(k1 + 1, xk1+1 − n+m)

Treating this as the base case, we can use an induction argument similar to that employed for

inputs in IL for the case n ≥ 2m− 1 to show that

yi = max(i, xi − n+m), k1 + 1 ≤ i ≤ k1 + k2

⇒ yi = max(i, xi − n+m), xi ∈ IT (45)

For input xk1+k2+1 we get

yk1+k2+1 = min
z

{z ∈ Axk1+k2+1 ∩ (Yk1+k2

1 )′} (from Lemma 2)

= min
z

{z ∈ {xk1+k2+1 − n+m, . . . ,m} ∩ (Yk1+k2

1 )′} (46)

As yk1+k2
= max(k1 + k2, xk1+k2

− n+m), we get the following two cases:

Case 1: yk1+k2
= k1 + k2. Since y1 < y2 < · · · < yk1+k2

, and yk1+k2
= k1 + k2

Yk1+k2

1 = {1, 2, . . . , k1 + k2}

⇒ (Yk1+k2

1 )′ = {k1 + k2 + 1, . . . ,m} (47)

Substituting Eqn. (47) in Eqn. (46) we get

yk1+k2+1 = min
z

{z ∈ {xk1+k2+1 − n+m, . . . ,m} ∩ {k1 + k2 + 1, . . . ,m}}

= min
z

{z ∈ {max(xk1+k2+1 − n+m, k1 + k2 + 1), . . . ,m}}

= max(xk1+k2+1 − n+m, k1 + k2 + 1). (48)

Case 2: yk1+k2
= xk1+k2

− n + m. Since y1 < · · · < yk1+k2
, maxz(z ∈ Yk1+k2

1 ) = yk1+k2
=

xk1+k2
− n+m.

⇒ (Yk1+k2

1 )′ = Z ∪{xk1+k2
−n+m+1, . . . ,m}, Z ⊆ {k1+k2+1, . . . , xk1+k2

−n+m−1}.
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Substituting this in Eqn. (48) we get

yk1+k2+1 = min
z

{z ∈ {xk1+k2+1 − n+m, . . . ,m} ∩ (Z ∪ {xk1+k2
− n+m+ 1, . . . ,m})}

= min
z

{z ∈ ∅ ∪ ({xk1+k2+1 − n+m, . . . ,m} ∩ {xk1+k2
− n+m+ 1, . . . ,m})}

= min
z

{z ∈ {max(xk1+k2
− n+m+ 1, xk1+k2+1 − n+m), . . . ,m}}

= max(xk1+k2
− n+m+ 1, xk1+k2+1 − n+m)

= xk1+k2+1 − n+m (as xk1+k2+1 ≥ xk1+k2
+ 1) (49)

Also, xk1+k2+1 − n+m ≥ xk1+k2
+ 1− n+m

= yk1+k2
+ 1

≥ k1 + k2 + 1 (50)
where Eqn. (50) follows from the fact that yk1+k2

= max(xk1+k2
−n+m, k1+k2). From

Eqns. (49) and (50), yk1+k2+1 = max(k1 + k2 + 1, xk1+k2+1 − n+m).

We can now use an induction argument for rest of the inputs in IL similar to the case

for n ≥ 2m− 1 to show that
yi = max(i, xi − n+m), k1 + k2 + 1 ≤ i ≤ r

⇒ yi = max(i, xi − n+m), xi ∈ IL.
Thus, by Theorem 2 the banded QSC(n,m) is self-routing.
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[14] M. K. Shukla, R. Ratan, and A. Y. Oruç, “A quantum self-routing packet switch,” in Proceedings of the 38th Annual

Conference on Information Sciences and Systems. CISS’04, Princeton, NJ, pp. 484–489, Mar. 2004.

[15] ——, “The quantum baseline network,” in Proceedings of the 39th Annual Conference on Information Sciences and

Systems. CISS’05, Baltimore, MD, Mar. 2005.

[16] S. T. Cheng and C. Y. Wang, “Quantum switching and quantum merge sorting,” IEEE Transactions on Circuits

and Systems I: Regular Papers, vol. 53, no. 2, pp. 316–325, Feb. 2006.

[17] C.-C. Sue, W.-R. Chen, and C.-Y. Huang, “Design and analysis of a fully non-blocking quantum switch,” in First

International Conference on Innovative Computing, Information and Control. ICICIC ’06, vol. 2, 2006, pp. 421–424.

[18] C.-C. Sue, “An enhanced universal n x n fully nonblocking quantum switch,” IEEE Transactions on Computers,

vol. 58, no. 2, pp. 238–250, 2009.

[19] R. Ratan and A. Y. Oruç, “Quantum switching networks with classical routing,” in Proceedings of the 41st Annual

Conference on Information Sciences and Systems. CISS’07, Baltimore, MD, Mar. 2007.

[20] S.-T. Cheng, C.-Y. Wang, and M.-H. Tao, “Quantum communication for wireless wide-area networks,” IEEE

Journal on Selected Areas in Communications, vol. 23, no. 7, July 2005.

[21] L. A. Bassalygo and M. S. Pinsker, “Complexity of an optimum nonblocking switching network without

reconnections,” Problems of Information Transmission, vol. 9, no. 1, 1974.

[22] L. A. Bassalygo, “Asymptotically optimal switching circuits,” Problems of Information Transmission, vol. 17, no. 3,

pp. 206–211, 1981.

[23] C. E. Shannon, “Memory requirements in a telephone exchange,” Bell System Technical Journal, vol. 29, pp.

343–349, 1950.
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